国产一级性片,欧美极品在线,天天夜干,一级黄免费

中國企業(yè)報集團(tuán)主管主辦

中國企業(yè)信息交流平臺

微博 微信

2022愛分析· 數(shù)據(jù)智能廠商全景報告

2022-09-29 15:11 來源:財訊網(wǎng) 次閱讀
 
2022愛分析· 數(shù)據(jù)智能廠商全景報告

報告編委

黃勇

愛分析合伙人&首席分析師

孟晨靜

愛分析高級分析師

李冬露

愛分析分析師

馮怡欣

愛分析分析師

蘭壹凡

愛分析分析師

目錄

1. 研究范圍定義

2. 廠商全景地圖

3. 市場分析與廠商評估

4. 入選廠商列表

1. 研究范圍定義

研究范圍

數(shù)據(jù)智能是指以數(shù)據(jù)為生產(chǎn)要素,通過融合大規(guī)模數(shù)據(jù)處理、數(shù)據(jù)分析與挖掘、機(jī)器學(xué)習(xí)、可視化等多種大數(shù)據(jù)和人工智能技術(shù),從數(shù)據(jù)中提煉、發(fā)掘具有揭示性和可操作性的信息,從而為企業(yè)提供數(shù)據(jù)驅(qū)動的分析與決策。

當(dāng)前,數(shù)據(jù)智能已經(jīng)成為企業(yè)實(shí)現(xiàn)數(shù)字化轉(zhuǎn)型的核心方式。一方面,在實(shí)現(xiàn)初步數(shù)字化的基礎(chǔ)上,企業(yè)希望把數(shù)據(jù)分析擴(kuò)展到更多的應(yīng)用場景,以在業(yè)務(wù)發(fā)展與運(yùn)營中實(shí)現(xiàn)降本增效,或構(gòu)建創(chuàng)新性的業(yè)務(wù)模式;另一方面,數(shù)據(jù)規(guī)模的持續(xù)膨脹,與分析場景的更加多樣化,也對數(shù)據(jù)存儲、處理和分析等方面的能力提出了更高的要求,因此企業(yè)需要對數(shù)據(jù)基礎(chǔ)設(shè)施進(jìn)行持續(xù)的升級與優(yōu)化。

本次報告將數(shù)據(jù)智能市場劃分為應(yīng)用解決方案和數(shù)據(jù)基礎(chǔ)設(shè)施兩大部分,其中數(shù)據(jù)基礎(chǔ)設(shè)施指利用云計算、人工智能、隱私計算等新興信息技術(shù)構(gòu)建的為企業(yè)賦能的平臺類解決方案,主要包括數(shù)據(jù)的采集、存儲、計算、管理等內(nèi)容,進(jìn)而為上層應(yīng)用提供數(shù)據(jù)服務(wù);應(yīng)用解決方案是指通過數(shù)據(jù)智能解決方案在垂直行業(yè)或通用職能領(lǐng)域直接賦能業(yè)務(wù)價值提升的最佳實(shí)踐。

綜合考慮企業(yè)關(guān)注度、行業(yè)落地進(jìn)展等因素,愛分析在本次研究中選取了數(shù)據(jù)基礎(chǔ)設(shè)施中的分析型數(shù)據(jù)庫、數(shù)據(jù)庫管理平臺、實(shí)時數(shù)據(jù)平臺、DataOps、數(shù)據(jù)中臺、云數(shù)據(jù)平臺、數(shù)據(jù)分析平臺、 數(shù)據(jù)科學(xué)與機(jī)器學(xué)習(xí)平臺、知識圖譜平臺、隱私計算平臺,以及應(yīng)用解決方案中的城市大數(shù)據(jù)平臺、智能營銷、安全大數(shù)據(jù)共計13個特定市場進(jìn)行重點(diǎn)研究。

本報告面向企業(yè)決策層以及數(shù)據(jù)部門、業(yè)務(wù)部門負(fù)責(zé)人,通過對各場景的需求定義和代表廠商的能力評估,為企業(yè)的數(shù)據(jù)智能基礎(chǔ)設(shè)施及應(yīng)用規(guī)劃、廠商選型提供參考。

圖 1: 數(shù)據(jù)智能市場全景地圖

廠商入選標(biāo)準(zhǔn)

本次入選報告的廠商需同時符合以下條件:

廠商的產(chǎn)品服務(wù)滿足各市場定義的廠商能力要求;

近一年廠商具備一定數(shù)量以上的付費(fèi)客戶(參考第3章各市場定義部分);

近一年廠商在特定市場的收入達(dá)到指標(biāo)要求(參考第3章各市場定義部分)。

2.廠商全景地圖

愛分析基于對甲方企業(yè)和典型廠商的調(diào)研以及桌面研究,遴選出在數(shù)據(jù)智能市場中具備成熟解決方案和落地能力的入選廠商。

3.市場分析與廠商評估

愛分析對本次數(shù)據(jù)智能項(xiàng)目重點(diǎn)研究的特定市場分析如下。同時,針對參與此次報告的部分代表廠商,愛分析撰寫了廠商能力評估。

3.1分析型數(shù)據(jù)庫

市場定義:

分析型數(shù)據(jù)庫是指為應(yīng)對企業(yè)管理人員、業(yè)務(wù)人員、數(shù)據(jù)分析師、數(shù)據(jù)科學(xué)家等人員對數(shù)據(jù)的各類分析和應(yīng)用需求而提供的各類數(shù)據(jù)存儲和計算引擎,包括數(shù)據(jù)倉庫、數(shù)據(jù)湖、大數(shù)據(jù)平臺以及湖倉一體數(shù)據(jù)平臺等。

甲方終端用戶:

企業(yè)IT部門、數(shù)據(jù)部門

甲方核心需求:

在企業(yè)數(shù)字化轉(zhuǎn)型的過程中,數(shù)據(jù)應(yīng)用場景呈現(xiàn)多元化趨勢,數(shù)據(jù)規(guī)模也呈爆發(fā)式增長,企業(yè)需要深入挖掘數(shù)據(jù)價值,以提高生產(chǎn)與經(jīng)營效率。在此背景下,對分析型數(shù)據(jù)庫的數(shù)據(jù)庫存儲、計算、查詢等能力提出了更高要求。具體而言,企業(yè)對分析型數(shù)據(jù)庫的需求如下:

實(shí)時數(shù)據(jù)應(yīng)用場景激增,企業(yè)需深入挖掘?qū)崟r數(shù)據(jù)商業(yè)價值。企業(yè)在提高生產(chǎn)與經(jīng)營效率的過程中發(fā)現(xiàn),數(shù)據(jù)的時效性至關(guān)重要,如電商行業(yè)的訂單查詢、金融行業(yè)的實(shí)時風(fēng)控等場景。因此,企業(yè)需要加強(qiáng)存儲、查詢與分析實(shí)時數(shù)據(jù)的能力,充分挖掘其商業(yè)價值。

業(yè)務(wù)需求爆炸式增長,存算資源彈性擴(kuò)展能力急需增強(qiáng)。傳統(tǒng)分析型數(shù)據(jù)庫的存儲和計算資源通常是耦合的,導(dǎo)致存儲資源冗余、計算資源不足與擴(kuò)展成本高的問題,且節(jié)點(diǎn)擴(kuò)展會存在上限,影響系統(tǒng)的高可用性;同時,部分企業(yè)采用本地部署分析型數(shù)據(jù)庫的方法也會對其存儲能力、擴(kuò)展性與并行處理能力產(chǎn)生影響。因此,企業(yè)需要優(yōu)化已有分析型數(shù)據(jù)庫的部署方式與擴(kuò)展能力,為大數(shù)據(jù)分析的性能與速度提供保障。

業(yè)務(wù)智能化場景增長,對企業(yè)數(shù)據(jù)價值挖掘能力提出更高要求。近年來,企業(yè)業(yè)務(wù)場景不斷豐富,數(shù)據(jù)正在成為其業(yè)務(wù)創(chuàng)新的核心,而大數(shù)據(jù)與人工智能等技術(shù)成為重要技術(shù)手段。但傳統(tǒng)數(shù)據(jù)庫存在對人工智能和機(jī)器學(xué)習(xí)等高級分析技術(shù)支持不足的問題。因此,企業(yè)需要借助人工智能技術(shù)增強(qiáng)分析型數(shù)據(jù)庫的分析能力與效率,以及時響應(yīng)業(yè)務(wù)需求。

運(yùn)維成本過高,數(shù)據(jù)系統(tǒng)架構(gòu)需簡化。部分企業(yè)受到資源、技術(shù)能力等的限制,缺乏統(tǒng)一規(guī)劃,部署了多種性能各異、彼此獨(dú)立的分析型數(shù)據(jù)庫,導(dǎo)致系統(tǒng)架構(gòu)非常復(fù)雜,管理、維護(hù)與數(shù)據(jù)遷移的成本很高,穩(wěn)定性差。因此,企業(yè)需要在統(tǒng)一規(guī)劃之后,簡化系統(tǒng)架構(gòu),降低分析型數(shù)據(jù)庫的運(yùn)維成本。

信創(chuàng)浪潮下,企業(yè)需要實(shí)現(xiàn)數(shù)據(jù)庫國產(chǎn)化。在信創(chuàng)政策要求下,政府、國央企與金融等行業(yè)需要將已有分析型數(shù)據(jù)庫更新為國產(chǎn)背景、符合信創(chuàng)要求、已通過國家自主可控測試的數(shù)據(jù)庫,充分保障數(shù)據(jù)庫的安全可控。

廠商能力要求:

具備較高的數(shù)據(jù)存儲、查詢與分析性能。廠商所提供的分析型數(shù)據(jù)庫需要能夠?qū)A繑?shù)據(jù)進(jìn)行存儲、高并發(fā)查詢與分析,滿足特定場景下的性能需求。例如,部分場景下分析型數(shù)據(jù)庫需要能夠存儲與管理實(shí)時數(shù)據(jù),支持各類SQL標(biāo)準(zhǔn),對海量實(shí)時數(shù)據(jù)進(jìn)行高性能數(shù)據(jù)加載、高并發(fā)查詢與分析等操作。

云上部署與彈性擴(kuò)展。廠商需要能夠提供支持云上部署、存儲節(jié)點(diǎn)與計算節(jié)點(diǎn)相互獨(dú)立且可分別獨(dú)立擴(kuò)展、在面對數(shù)據(jù)高并發(fā)場景時可按需快速實(shí)且現(xiàn)橫向擴(kuò)容的分析型數(shù)據(jù)庫,充分利用云的可擴(kuò)展性與相關(guān)資源。

支持智能化的數(shù)據(jù)分析和應(yīng)用。廠商所提供的分析型數(shù)據(jù)庫需要能夠應(yīng)用當(dāng)前流行的AI、機(jī)器學(xué)習(xí)、高級分析等技術(shù),實(shí)現(xiàn)對海量、高吞吐、高并發(fā)、多源異構(gòu)數(shù)據(jù)的自動化與智能化查詢與分析,提高數(shù)據(jù)價值挖掘效率與質(zhì)量。

簡化系統(tǒng)架構(gòu),統(tǒng)一管理數(shù)據(jù)。廠商需要提供性能良好、穩(wěn)定性強(qiáng)、能夠與已有數(shù)據(jù)庫兼容的分析型數(shù)據(jù)庫,幫助企業(yè)實(shí)現(xiàn)簡化數(shù)據(jù)系統(tǒng)架構(gòu),實(shí)現(xiàn)以低成本進(jìn)行系統(tǒng)維護(hù)、數(shù)據(jù)開發(fā)以及數(shù)據(jù)的統(tǒng)一存儲與分析。

符合信創(chuàng)標(biāo)準(zhǔn),實(shí)現(xiàn)國產(chǎn)化替代。廠商需要能夠提供國產(chǎn)自研、能夠與國產(chǎn)主流軟硬件兼容適配、符合國家信息安全標(biāo)準(zhǔn)等資質(zhì)要求的分析型數(shù)據(jù)庫,同時,還需能夠進(jìn)行數(shù)據(jù)庫遷移,完成國產(chǎn)化替代。

入選標(biāo)準(zhǔn):

符合分析型數(shù)據(jù)庫市場廠商能力要求;

2021Q2至2022Q1該市場付費(fèi)客戶數(shù)量≥10個

2021Q2至2022Q1該市場合同收入≥1000萬元

代表廠商評估:

(注:以下代表廠商評估均按廠商簡稱首字音序排序)

柏睿數(shù)據(jù)

廠商介紹:

柏睿數(shù)據(jù)是一家以數(shù)據(jù)庫為核心的“Data+AI”數(shù)據(jù)智能基礎(chǔ)軟件公司,基于完全自主研發(fā)的新一代全內(nèi)存分布式數(shù)據(jù)庫產(chǎn)品體系和人工智能產(chǎn)品體系,構(gòu)建數(shù)據(jù)智能平臺,以智能數(shù)據(jù)算力技術(shù)支撐,實(shí)時、迅捷、高效挖掘數(shù)據(jù)價值,為政府及國民產(chǎn)業(yè)數(shù)字化轉(zhuǎn)型升級賦能。

產(chǎn)品服務(wù)介紹:

RapidsDB是柏睿數(shù)據(jù)全國產(chǎn)自主研發(fā)、具有完整獨(dú)立知識產(chǎn)權(quán)、基于全內(nèi)存結(jié)構(gòu)的分布式分析型數(shù)據(jù)庫,具備金融級數(shù)據(jù)持久化、數(shù)據(jù)安全性、系統(tǒng)高可用性,高于傳統(tǒng)磁盤架構(gòu)數(shù)據(jù)庫100+倍數(shù)據(jù)讀寫訪問和分析性能,適用于數(shù)據(jù)量大、實(shí)時性要求高的應(yīng)用場景。

廠商評估:

依靠專業(yè)的團(tuán)隊與豐富的行業(yè)實(shí)踐經(jīng)驗(yàn),柏睿數(shù)據(jù)提供了數(shù)據(jù)存儲與處理性能優(yōu)良、自主可控的內(nèi)存分布式數(shù)據(jù)庫RapidsDB與全流程原廠服務(wù)。

基于全內(nèi)存架構(gòu),數(shù)據(jù)存儲、訪問與分析性能優(yōu)良,能夠滿足企業(yè)復(fù)雜的數(shù)據(jù)存儲與處理需求。RapidsDB數(shù)據(jù)庫是以全內(nèi)存架構(gòu)為基礎(chǔ)的分布式數(shù)據(jù)庫,具有高性能、高可擴(kuò)展性強(qiáng)與高易用性。通過將數(shù)據(jù)全量加載到內(nèi)存中進(jìn)行處理,大幅度提升了數(shù)據(jù)訪問速度與運(yùn)算能力,滿足企業(yè)高并發(fā)、低延時的業(yè)務(wù)需求;分布式架構(gòu)能夠通過集群及數(shù)據(jù)庫分區(qū)的方式最大限度的提升負(fù)載狀態(tài)下的數(shù)據(jù)庫性能,當(dāng)企業(yè)數(shù)據(jù)增長量達(dá)到一定規(guī)模后,無需對原有架構(gòu)進(jìn)行改動,即可在線靈活擴(kuò)展。為解決傳統(tǒng)數(shù)據(jù)庫難以支撐企業(yè)海量分析需求的問題,柏睿數(shù)據(jù)還將數(shù)據(jù)庫技術(shù)與人工智能技術(shù)深度融合,降低了數(shù)據(jù)讀取的難度,企業(yè)可通過統(tǒng)一的數(shù)據(jù)庫分析平臺實(shí)現(xiàn)全量數(shù)據(jù)的實(shí)時分析,并應(yīng)用于企業(yè)預(yù)測性業(yè)務(wù)場景中。此外, 該數(shù)據(jù)庫還支持云端部署、統(tǒng)一SQL標(biāo)準(zhǔn)查詢等功能,易用性大大提高。

技術(shù)全棧自研,產(chǎn)品自主可控,符合信創(chuàng)標(biāo)準(zhǔn)。柏睿數(shù)據(jù)庫內(nèi)核技術(shù)完全自主研發(fā),實(shí)現(xiàn)了數(shù)據(jù)庫SQL解析層、優(yōu)化層、執(zhí)行層到存儲層的自主可控,兼容適配了全部國產(chǎn)主機(jī)、芯片及操作系統(tǒng),順應(yīng)了信創(chuàng)趨勢?;诖?#xff0c;公司不僅能夠主導(dǎo)產(chǎn)品的功能迭代,針對不同客戶的個性化需求做定制化功能,還能在網(wǎng)絡(luò)存儲計算資源等方面快速優(yōu)化,提供原廠級的數(shù)據(jù)庫管理運(yùn)維工具。此外,公司還成立了信創(chuàng)小組,定期與不同的行業(yè)機(jī)構(gòu)、客戶、行業(yè)主管單位、技術(shù)主管單位等進(jìn)行信創(chuàng)數(shù)據(jù)庫技術(shù)探討以及需求對接,對產(chǎn)品進(jìn)行優(yōu)化改進(jìn),更好的應(yīng)對將來信創(chuàng)政策的全面落地。

自主研發(fā)安全芯片,發(fā)展上游數(shù)據(jù)治理能力,為分析型數(shù)據(jù)庫發(fā)揮性能提供堅實(shí)基礎(chǔ)。為了更好的服務(wù)客戶,除了數(shù)據(jù)庫產(chǎn)品外,柏睿數(shù)據(jù)還著力于硬件研發(fā)與數(shù)據(jù)治理能力強(qiáng)化。一方面,該企業(yè)組建DPU開發(fā)團(tuán)隊進(jìn)行安全芯片研發(fā),將其與自研數(shù)據(jù)庫技術(shù)結(jié)合,有效解決了交易型數(shù)據(jù)庫與分析型數(shù)據(jù)庫行列混合存儲帶來的性能下降問題,實(shí)現(xiàn)了對數(shù)據(jù)庫讀寫、存儲、并行查詢等操作的全域加速;另一方面,深入研究數(shù)據(jù)編織,幫助企業(yè)更加安全、快速的進(jìn)行數(shù)據(jù)傳輸,以支持分析型數(shù)據(jù)庫的實(shí)時分析。

深耕六大行業(yè),為客戶提供數(shù)據(jù)庫全流程精細(xì)化服務(wù)。自成立以來,柏睿數(shù)據(jù)致力于為產(chǎn)業(yè)數(shù)字化賦能,憑借其多樣化的產(chǎn)品、經(jīng)驗(yàn)豐富的行業(yè)專家團(tuán)隊以及客戶成功團(tuán)隊,為金融、能源、工業(yè)、互聯(lián)網(wǎng)四大行業(yè)與數(shù)字政府、智慧城市兩大領(lǐng)域提供全內(nèi)存分析型數(shù)據(jù)庫產(chǎn)品與全流程原廠數(shù)據(jù)庫服務(wù),以滿足各行業(yè)的多樣化場景需求。其中,原廠數(shù)據(jù)庫服務(wù)涵蓋部署前的規(guī)劃咨詢、部署中的數(shù)據(jù)開發(fā)遷移以及部署后的運(yùn)維培訓(xùn)服務(wù)。

典型客戶:

中國移動、北方健康

睿帆科技

廠商介紹:

廣州睿帆科技有限公司(簡稱“睿帆科技”)成立于2015年,以大數(shù)據(jù)及人工智能為核心技術(shù)為用戶提供平臺產(chǎn)品及服務(wù),擁有自主創(chuàng)新的數(shù)據(jù)智能全生命周期產(chǎn)品體系,包括Baymax大數(shù)據(jù)科學(xué)平臺、國產(chǎn)分布式雪球數(shù)據(jù)庫、慧帆AI平臺、湖倉一體大數(shù)據(jù)開發(fā)平臺、InfoMover實(shí)時采集同步等,賦能企業(yè)數(shù)字化轉(zhuǎn)型、為企業(yè)提供智能管理與知識服務(wù),服務(wù)領(lǐng)域覆蓋電信運(yùn)營商、公安、軌道交通、政務(wù)、金融、應(yīng)急等多個行業(yè)。

產(chǎn)品服務(wù)介紹:

SnowballDB?是睿帆科技自主研發(fā)的用于聯(lián)機(jī)分析處理的 MPP 列式數(shù)據(jù)庫。SnowballDB?提供 PB 級別大數(shù)據(jù)集的在線多維查詢和分布式存儲,支持超低查詢時延,百億級數(shù)據(jù)毫秒級查詢;支持準(zhǔn)實(shí)時數(shù)據(jù)更新,支持邊寫邊查,可進(jìn)行準(zhǔn)實(shí)時全量數(shù)據(jù)分析;支持高并發(fā),可上百人同時查詢;具有高容錯機(jī)制,支持跨中心多副本災(zāi)備,數(shù)據(jù)自動同步、自動恢復(fù)。SnowballDB?適用于海量結(jié)構(gòu)化數(shù)據(jù)存儲、高并發(fā)點(diǎn)查詢、高吞吐即席查詢、多維分析和實(shí)時查詢場景。

廠商評估:

睿帆科技SnowballDB?產(chǎn)品在支持高并發(fā)查詢、實(shí)時數(shù)據(jù)查詢、高性能寫入以及易用性等方面具有明顯優(yōu)勢;此外融合SnowballDB?分析型數(shù)據(jù)庫和Baymax?大數(shù)據(jù)科學(xué)平臺,睿帆科技還能提供一站式數(shù)據(jù)平臺解決方案。

睿帆科技SnowballDB?具有極速聯(lián)機(jī)分析性能,支持PB級數(shù)據(jù)高并發(fā)查詢和實(shí)時數(shù)據(jù)查詢。SnowballDB?的極速聯(lián)機(jī)分析性能通過列式存儲、MPP集群架構(gòu)、向量化執(zhí)行、LLVM編譯等四種特性實(shí)現(xiàn)。首先,SnowballDB?的列式存儲可顯著降低IO消耗,加快查詢速度,且列式存儲可支持輕量化壓縮,在保證高性能的前提下實(shí)現(xiàn)較高壓縮比,降低數(shù)據(jù)存儲成本,適用于高并發(fā)查詢場景。其次,SnowballDB?分布式集群架構(gòu)支持多并發(fā)查詢以及讀寫并發(fā),允許在運(yùn)行時創(chuàng)建表、加載數(shù)據(jù)和運(yùn)行查詢,無需重新配置或重啟服務(wù),適用于準(zhǔn)實(shí)時數(shù)據(jù)查詢場景。再次,SnowballDB?向量化執(zhí)行既能對列數(shù)據(jù)一個批次調(diào)用一個指令,有效減少函數(shù)調(diào)用次數(shù),又能實(shí)現(xiàn)僅加載必要列數(shù)據(jù)進(jìn)CPU緩存,充分利用CPU資源。此外,在編譯策略上,SnowballDB?支持LLVM動態(tài)編譯,能極大提高代碼執(zhí)行效率。

SnowballDB?具有高性能數(shù)據(jù)寫入特性。一方面,分布式集群架構(gòu)采用share-nothing方式,支持多節(jié)點(diǎn)并行寫入,消除單節(jié)點(diǎn)性能瓶頸,最大化集群寫入性能。另一方面,SnowballDB?采用先進(jìn) Hash 隨機(jī)算法,自動均衡各節(jié)點(diǎn)數(shù)據(jù)分布,保證各節(jié)點(diǎn)磁盤占用相對均衡。 此外,SnowballDB?支持多副本備份,可在不同節(jié)點(diǎn)上維護(hù)相同數(shù)據(jù),當(dāng)前節(jié)點(diǎn)發(fā)生故障時,自動切換由備份副本提供服務(wù),在保證數(shù)據(jù)安全的情況下提升性能。

具有較強(qiáng)的易用性,能顯著降低用戶使用門檻。SnowballDB?提供圖形化管理工具,可實(shí)現(xiàn)數(shù)據(jù)庫對象管理、可視化SQL查詢工具、系統(tǒng)診斷分析、用戶權(quán)限管理、集群監(jiān)控、副本監(jiān)控等數(shù)據(jù)庫全生命周期運(yùn)營管理。SnowballDB?內(nèi)置多種表引擎,用戶可直接訪問 HDFS / KAFKA / MYSQL 等外部數(shù)據(jù)源,無需額外代碼,降低使用門檻。此外在安裝方面,SnowballDB?支持多種安裝方式,如可使用標(biāo)準(zhǔn)的 Ambari 開源平臺提供的圖形化安裝配置管理功能,進(jìn)行動態(tài)添加刪除集群節(jié)點(diǎn)、調(diào)整SnowballDB?的配置參數(shù)、啟停 SnowballDB?服務(wù)以及動態(tài)更新升級版本;也支持RPM包安裝。

睿帆科技具備提供一站式數(shù)據(jù)平臺解決方案的能力,在電信運(yùn)營商行業(yè)服務(wù)經(jīng)驗(yàn)豐富。睿帆融合SnowballDB?分析型數(shù)據(jù)庫和Baymax?大數(shù)據(jù)科學(xué)平臺,協(xié)同多源異構(gòu)數(shù)據(jù)集成、高性能在線分析及查詢、開發(fā)應(yīng)用等功能,為客戶提供數(shù)據(jù)融合、數(shù)據(jù)治理、高速檢索、多維分析、交互查詢等數(shù)據(jù)中臺能力。目前,睿帆數(shù)據(jù)平臺解決方案服務(wù)領(lǐng)域涉及電信運(yùn)營商、政府、安防、交通等行業(yè),服務(wù)節(jié)點(diǎn)超過1000個,日處理數(shù)據(jù)達(dá)到PB級,其中電信運(yùn)營商客戶已覆蓋廣東、河南、四川、浙江等全國10余個省市自治區(qū)。

典型客戶:

北京移動、四川移動、廣東省公安廳機(jī)場公安局、廣州市公安局白云區(qū)分局

3.2數(shù)據(jù)庫管理平臺

市場定義:

數(shù)據(jù)庫管理平臺是指具備對多類型數(shù)據(jù)庫進(jìn)行統(tǒng)一安裝部署、遷移、備份、監(jiān)控告警、巡檢、性能分析、智能運(yùn)維、安全管控等數(shù)據(jù)庫全生命周期管理能力,提升企業(yè)數(shù)據(jù)庫綜合運(yùn)維效率的平臺。

甲方終端用戶:

數(shù)據(jù)庫管理員

甲方核心需求:

企業(yè)應(yīng)用的數(shù)據(jù)庫種類在快速增長,一方面豐富的數(shù)據(jù)類型需要多種關(guān)系型、非關(guān)系型數(shù)據(jù)庫儲存;另一方面,開源和國產(chǎn)數(shù)據(jù)庫的崛起也迅速打破傳統(tǒng)商業(yè)數(shù)據(jù)庫壟斷的局面。數(shù)據(jù)庫種類的增加在滿足企業(yè)多種場景需求的同時,也帶來繁重的數(shù)據(jù)庫管理及運(yùn)維工作。企業(yè)需要簡化多模異構(gòu)數(shù)據(jù)庫的管理工作,降低管理成本。企業(yè)對數(shù)據(jù)庫管理平臺的核心需求主要體現(xiàn)在以下幾個方面:

簡化數(shù)據(jù)庫管理工作,降低數(shù)據(jù)庫運(yùn)維成本。隨著企業(yè)系統(tǒng)中數(shù)據(jù)庫數(shù)量及種類快速增加,企業(yè)需要完善的數(shù)據(jù)庫管理工具如監(jiān)控告警、安裝部署、備份恢復(fù)、安全管理、高可用性、資源管理等工具對多終數(shù)據(jù)庫進(jìn)行統(tǒng)一的管理運(yùn)維,簡化數(shù)據(jù)庫管理工作。

??數(shù)據(jù)庫管理員易上手、操作便捷。針對復(fù)雜的數(shù)據(jù)庫集群架構(gòu),企業(yè)需要數(shù)據(jù)庫管理平臺兼容多種類型數(shù)據(jù)庫,提供諸如可視化功能、系統(tǒng)診斷分析、支持自動及自定義部署等工具,幫助數(shù)據(jù)庫管理員實(shí)現(xiàn)多數(shù)據(jù)庫輕松管理、便捷安裝。

廠商能力要求:

廠商需要能夠提供平臺化、一體化的數(shù)據(jù)庫管理平臺產(chǎn)品。數(shù)據(jù)庫管理平臺能夠提供多基礎(chǔ)設(shè)施的整合能力,將多種類型的數(shù)據(jù)庫納入管理的范圍,并提供平臺化的工具覆蓋數(shù)據(jù)庫全生命周期,整合監(jiān)控、性能分析、巡檢、審核、運(yùn)維、安裝部署、變更、SQL執(zhí)行、數(shù)據(jù)遷移、安全管控等眾多功能模塊,為企業(yè)提供一體化的數(shù)據(jù)庫管理服務(wù),降低復(fù)雜性。

廠商需具備數(shù)據(jù)庫智能化管理能力。除數(shù)據(jù)庫管理外,廠商還應(yīng)具備機(jī)器學(xué)習(xí)、RPA等AI技術(shù),將部署、巡檢、數(shù)據(jù)采集、審核等流程自動化或半自動化,減少重復(fù)的人力勞動;以及支持?jǐn)?shù)據(jù)庫智能分析,提供數(shù)據(jù)庫性能可視化,實(shí)現(xiàn)智能告警優(yōu)化、趨勢分析、異常診斷等數(shù)據(jù)庫運(yùn)維功能,降低數(shù)據(jù)庫管理員門檻。

入選標(biāo)準(zhǔn):

1. 符合數(shù)據(jù)庫管理平臺市場全部廠商能力要求;

2. 2021Q2至2022Q1該市場付費(fèi)客戶數(shù)量≥5個;

3.2021Q2至2022Q1該市場合同收入≥500萬元。

代表廠商評估:

(注:以下代表廠商評估均按廠商簡稱首字音序排序)

愛可生

廠商介紹:

上海愛可生信息技術(shù)股份有限公司(簡稱“愛可生”)成立于2003年,是數(shù)據(jù)庫整體解決方案提供商,國家規(guī)劃布局內(nèi)重點(diǎn)軟件企業(yè),具備自助知識產(chǎn)權(quán)的核心數(shù)據(jù)處理關(guān)鍵技術(shù),為企業(yè)數(shù)字化轉(zhuǎn)型提供高性價比、快速落地的分布式數(shù)據(jù)庫、多數(shù)據(jù)庫智能管理平臺、數(shù)據(jù)庫容器云平臺和面向AI的向量數(shù)據(jù)庫等產(chǎn)品。

產(chǎn)品服務(wù)介紹:

愛可生的云樹?DMP產(chǎn)品是一款可管理多款開源和信創(chuàng)數(shù)據(jù)庫的集群管理平臺,提供部署、監(jiān)控、備份、高可用、日志管理、事件告警等功能組件,實(shí)現(xiàn)對數(shù)據(jù)庫的一站式管理。云樹?DMP提供自動監(jiān)控所有數(shù)據(jù)庫實(shí)例,通過統(tǒng)一管理視圖界面展示,方便用戶管理整個基礎(chǔ)數(shù)據(jù)庫設(shè)施;支持便捷部署并正確使用讀寫分離中間件或分布式中間件,自動維護(hù)中間件和數(shù)據(jù)庫實(shí)例的高可用性;可對數(shù)據(jù)庫實(shí)例進(jìn)行故障檢測,自動處理可用性問題等功能。

廠商評估:

愛可生云樹?DMP產(chǎn)品能顯著增強(qiáng)開源數(shù)據(jù)庫功能完備性,并且在案例積累以及為用戶提供數(shù)據(jù)庫全生命周期一體化解決方案方面具有較強(qiáng)優(yōu)勢。

云樹?DMP集成開源數(shù)據(jù)庫周邊生態(tài)工具,能增強(qiáng)數(shù)據(jù)庫功能完備性。在數(shù)據(jù)庫運(yùn)維方面,云樹?DMP在諸如監(jiān)控告警、安裝部署、備份恢復(fù)等基礎(chǔ)運(yùn)維功能之外,還提供了高可用性、災(zāi)備管理、資源管理等多種運(yùn)維功能。其中高可用組件支持用戶進(jìn)行多種高可用架構(gòu)部署,可對數(shù)據(jù)庫實(shí)例進(jìn)行故障檢測,自動處理諸如虛擬機(jī)崩潰、計算節(jié)點(diǎn)服務(wù)進(jìn)程崩潰、主機(jī)宕機(jī)等故障場景,還能支持便捷的切換主庫、部署新從庫、變更中間件等拓?fù)渥兏?#xff0c;維護(hù)數(shù)據(jù)庫實(shí)例的高可用性;災(zāi)備管理組件可使用戶掌控系統(tǒng)容災(zāi)業(yè)務(wù)運(yùn)行情況,快速方便的完成數(shù)據(jù)恢復(fù)和測試演練,實(shí)現(xiàn)對虛擬機(jī)數(shù)據(jù)的備份,保障跨數(shù)據(jù)中心數(shù)據(jù)資產(chǎn)安全;在資源管理中,讀寫分離組件和分庫分表組件支持?jǐn)?shù)據(jù)庫節(jié)點(diǎn)根據(jù)需求進(jìn)行動態(tài)水平擴(kuò)展或針對節(jié)點(diǎn)性能容量限制進(jìn)行縱向擴(kuò)展,能提升開源數(shù)據(jù)庫的擴(kuò)展性。在數(shù)據(jù)庫開發(fā)方面,云樹?DMP還提供諸如SQL編輯、審核、脫敏等數(shù)據(jù)庫開發(fā)工具。

此外,云樹?DMP還具備良好的兼容性、易用性,且部署便捷簡單。架構(gòu)方面,云樹?DMP能兼容MySQL標(biāo)準(zhǔn)協(xié)議下的所有開源數(shù)據(jù)庫產(chǎn)品,提供數(shù)據(jù)庫管理能力;易用性方面,云樹?DMP提供數(shù)據(jù)庫運(yùn)維視屏,實(shí)時展示數(shù)據(jù)庫集群的可用性、實(shí)例數(shù)、容量、告警等信息,用戶可輕松管理復(fù)雜數(shù)據(jù)庫集群架構(gòu);部署方面,云樹?DMP支持自動部署,支持任何類型基礎(chǔ)設(shè)施,用戶可自定義部署規(guī)范。

愛可生具備深厚的開源數(shù)據(jù)庫研發(fā)能力和完善的服務(wù)體系,融合云樹?DMP平臺,協(xié)同為用戶提供數(shù)據(jù)庫全生命周期一體化解決方案。研發(fā)方面,愛可生具備基于多種開源數(shù)據(jù)庫產(chǎn)品如MySQL、TiDB、OceanBase、OpenGauss、Redis的自研優(yōu)化能力,持續(xù)研發(fā)增強(qiáng)數(shù)據(jù)庫核心功能,并為開源社區(qū)反饋貢獻(xiàn)源碼。服務(wù)方面,愛可生為用戶提供包括數(shù)據(jù)庫、數(shù)據(jù)庫管理平臺產(chǎn)品在內(nèi)的豐富的知識庫以及培訓(xùn)考核體系,幫助用戶快速落地。因此,融合開源數(shù)據(jù)庫研發(fā)能力、云樹?DMP數(shù)據(jù)庫生態(tài)工具以及服務(wù)能力,愛可生能為用戶提供從數(shù)據(jù)庫架構(gòu)設(shè)計、開發(fā)、運(yùn)維全生命周期一體化服務(wù)。

愛可生還具備豐富的金融行業(yè)數(shù)據(jù)庫管理平臺實(shí)踐經(jīng)驗(yàn),為用戶提供安全穩(wěn)定的用戶體驗(yàn)。愛可生是最早進(jìn)入數(shù)據(jù)庫管理平臺市場的廠商之一,已經(jīng)在金融領(lǐng)域積累多個標(biāo)桿案例,持續(xù)通過用戶業(yè)務(wù)場景持續(xù)驗(yàn)證并完善云樹?DMP產(chǎn)品的安全性、穩(wěn)定性。此外,愛可生參與編寫信通院《大數(shù)據(jù) 數(shù)據(jù)庫管理平臺技術(shù)要求》標(biāo)準(zhǔn),且云樹?DMP是業(yè)內(nèi)首個通過信通院數(shù)據(jù)庫管理平臺產(chǎn)品能力測試的產(chǎn)品,在平臺基礎(chǔ)能力、平臺資源管理能力、安裝部署能力、性能分析及優(yōu)化能力、健康檢查能力、高可用能力、運(yùn)維管理能力等12項(xiàng)能力域均達(dá)到標(biāo)準(zhǔn)。

典型客戶:

興業(yè)銀行、百勝中國、銀聯(lián)國際

3.3實(shí)時數(shù)據(jù)平臺

市場定義:

實(shí)時數(shù)據(jù)平臺是指基于數(shù)據(jù)同步、流處理等技術(shù),支撐數(shù)據(jù)實(shí)時采集與接入、實(shí)時存儲、實(shí)時計算、實(shí)時分析與查詢等能力,從而提供實(shí)時數(shù)據(jù)查詢與分析決策服務(wù)的數(shù)據(jù)平臺。

甲方終端用戶:

企業(yè)IT人員、數(shù)據(jù)工程師、數(shù)據(jù)科學(xué)家

甲方核心需求:

隨著市場競爭環(huán)境和客戶需求的快速變化,以及實(shí)時數(shù)據(jù)的積累,實(shí)時數(shù)據(jù)應(yīng)用在提高生產(chǎn)效率、提升客戶體驗(yàn)和提供個性化產(chǎn)品和服務(wù)方面的價值日益凸顯,企業(yè)對數(shù)據(jù)驅(qū)動業(yè)務(wù)決策的實(shí)時性需求在不斷提升。為此,許多企業(yè)通過手工定制、消息總線和事件流中間件等方式進(jìn)行數(shù)據(jù)集成,但這些方式各自面臨業(yè)務(wù)耦合度過高,管理、復(fù)用困難,實(shí)時性不足等缺陷,因此,企業(yè)需要通建設(shè)統(tǒng)一平臺進(jìn)行實(shí)時數(shù)據(jù)的匯聚、開發(fā)和運(yùn)維管理。企業(yè)對實(shí)時數(shù)據(jù)平臺的需求主要有以下方面:

實(shí)現(xiàn)實(shí)時數(shù)據(jù)匯聚。企業(yè)數(shù)據(jù)分散保存在多個數(shù)據(jù)庫、系統(tǒng)中,數(shù)據(jù)的類型繁多、數(shù)據(jù)收集頻率的差異也在客觀上提升了數(shù)據(jù)進(jìn)行實(shí)時采集和同步的難度,因此,企業(yè)急需通過借助專門的實(shí)時數(shù)據(jù)工具,實(shí)現(xiàn)實(shí)時數(shù)據(jù)匯聚。

海量數(shù)據(jù)統(tǒng)一存儲和管理。大型企業(yè)每天產(chǎn)生的數(shù)據(jù)在TB甚至PB級,多數(shù)據(jù)源、多模數(shù)據(jù)的大量采集、長期保存、冷數(shù)據(jù)變溫數(shù)據(jù)等帶來了新的海量數(shù)據(jù)存儲需求,而隨著企業(yè)數(shù)字化建設(shè)進(jìn)程加快,數(shù)據(jù)存儲云、邊、端并行,需要對數(shù)據(jù)進(jìn)行有效管理,保證數(shù)據(jù)能夠高速流轉(zhuǎn)。

數(shù)據(jù)即時查詢和分析。查詢和分析是實(shí)時數(shù)據(jù)應(yīng)用的核心,但大數(shù)據(jù)的加工、處理和分析過程較為復(fù)雜,因此如何能夠提升數(shù)據(jù)查詢和分析速度,讓實(shí)時數(shù)據(jù)的價值最大化,是企業(yè)最為關(guān)注的焦點(diǎn)。

技術(shù)架構(gòu)支持業(yè)務(wù)穩(wěn)定運(yùn)行。企業(yè)流數(shù)據(jù)往往有多個來源,以金融、零售行業(yè)為例,在雙十一、618等重大節(jié)點(diǎn)容易面臨數(shù)據(jù)高并發(fā)的情況。因此企業(yè)需要搭建一套穩(wěn)定成熟的平臺架構(gòu),在高并發(fā)的情況下保證系統(tǒng)運(yùn)行穩(wěn)定性。

在各業(yè)務(wù)場景中最大化實(shí)時數(shù)據(jù)的價值。實(shí)時數(shù)據(jù)分析是一個與業(yè)務(wù)場景進(jìn)行深度結(jié)合的過程,因此企業(yè)需要針對自身業(yè)務(wù)情況,根據(jù)不同場景的要求,與具體業(yè)務(wù)邏輯相結(jié)合進(jìn)行高度定制化的場景開發(fā),從而保證應(yīng)用效果最大化。

廠商能力要求:

? 提供實(shí)時數(shù)據(jù)匯聚能力。一方面,廠商需高度適配各類技術(shù)框架,支持Kafka、RocketMQ、 IBM WebSphere MQ等多種數(shù)據(jù)源,以及多種數(shù)據(jù)格式;另一方面,廠商需要提供實(shí)時數(shù)據(jù)采集和計算技術(shù)框架,實(shí)現(xiàn)數(shù)據(jù)實(shí)時匯聚。

提供統(tǒng)一數(shù)據(jù)管理平臺,進(jìn)行數(shù)據(jù)分類分級存儲和管理。首先,廠商需要為企業(yè)提供統(tǒng)一數(shù)據(jù)管理能力,通過平臺化的集中式開發(fā),沉淀數(shù)據(jù)任務(wù)模型,統(tǒng)一規(guī)范數(shù)據(jù)調(diào)用權(quán)限。在此基礎(chǔ)上,廠商要基于存算分離模型,根據(jù)數(shù)據(jù)訪問需求程度和其生命周期階段,對熱數(shù)據(jù)、溫數(shù)據(jù)和冷數(shù)據(jù)進(jìn)行分級存儲。

具備高性能數(shù)據(jù)分析引擎。在數(shù)據(jù)分析與計算環(huán)節(jié),廠商需將實(shí)時處理過程中的復(fù)雜計算邏輯,包括糅合指標(biāo)、模型、業(yè)務(wù)規(guī)則等各類計算邏輯封裝為可編輯的數(shù)據(jù)模型,并盡量實(shí)現(xiàn)高度模塊化封裝。其次,分析引擎需要具備較高性能, 提供目標(biāo)應(yīng)用程序所需的吞吐量和延遲要求,對數(shù)據(jù)查詢進(jìn)行即時響應(yīng),同時盡量能夠提供基于 API 的高度靈活和可擴(kuò)展的查詢分析服務(wù)。

提供滿足高并發(fā)高可用的先進(jìn)技術(shù)架構(gòu)。廠商需要提供高可用的技術(shù)架構(gòu),甚至可進(jìn)一步具備在異常情況下的集群自愈能力,幫助企業(yè)有效應(yīng)對數(shù)據(jù)高并發(fā)量的壓力。

場景化實(shí)施經(jīng)驗(yàn)豐富,具有成熟的行業(yè)解決方案和較強(qiáng)的定制化能力。不同行業(yè)在數(shù)據(jù)類型和實(shí)時數(shù)據(jù)應(yīng)用場景上都有很大差異,而每個具體應(yīng)用場景都是大數(shù)據(jù)技術(shù)、數(shù)據(jù)指標(biāo)、模型和業(yè)務(wù)邏輯有機(jī)結(jié)合的產(chǎn)物,因此廠商首先需要具備定制化開發(fā)能力,其次需要在積累不同行業(yè)的場景化落地經(jīng)驗(yàn)的基礎(chǔ)上形成相對標(biāo)準(zhǔn)化的行業(yè)解決方案,保證實(shí)時數(shù)據(jù)平臺的成功落地。

入選標(biāo)準(zhǔn):

1.符合實(shí)時數(shù)據(jù)平臺廠商能力要求;

2. 2021Q2至2022Q1該市場付費(fèi)客戶數(shù)量≥5個;

3. 2021Q2至2022Q1該市場合同收入≥500萬元。

代表廠商評估:

(注:以下代表廠商評估均按廠商簡稱首字音序排序)

九章云極

廠商介紹:

九章云極DataCanvas成立于2013年,是中國數(shù)據(jù)智能基礎(chǔ)軟件的領(lǐng)軍企業(yè),專注數(shù)據(jù)智能基礎(chǔ)軟件和數(shù)據(jù)科學(xué)平臺的持續(xù)開發(fā)與建設(shè),通過自主研發(fā)的一系列企業(yè)級AI應(yīng)用所需的平臺軟件產(chǎn)品及解決方案,極大降低了AI門檻,助力用戶實(shí)現(xiàn)數(shù)智化升級,推動政府、金融、通信、制造、交通、互聯(lián)網(wǎng)等多領(lǐng)域客戶AI規(guī)?;瘧?yīng)用。

產(chǎn)品服務(wù)介紹:

九章云極DataCanvas RT 是一款分布式流數(shù)據(jù)實(shí)時處理、分析和決策平臺,覆蓋實(shí)時數(shù)據(jù)集成、數(shù)據(jù)資產(chǎn)創(chuàng)建和管理、數(shù)據(jù)建模分析、數(shù)據(jù)服務(wù)和運(yùn)維監(jiān)控全生命周期,幫助企業(yè)形成風(fēng)險監(jiān)控、精準(zhǔn)營銷、實(shí)時預(yù)警與事中分析等多種實(shí)時分析決策能力。

廠商評估:

九章云極DataCanvas一站式實(shí)時數(shù)據(jù)分析平臺,具有功能模塊化銜接、技術(shù)架構(gòu)穩(wěn)定高可用等優(yōu)勢,通過其完善的應(yīng)用開發(fā)能力和用戶管理能力,能有效幫助企業(yè)實(shí)現(xiàn)實(shí)時數(shù)據(jù)分析和應(yīng)用。

提供覆蓋實(shí)時數(shù)據(jù)分析全生命周期的一站式平臺,能有效實(shí)現(xiàn)各流程無縫銜接,提升分析效率,降低系統(tǒng)部署復(fù)雜度。九章云極DataCanvas提供一站式流數(shù)據(jù)分析平臺,將流數(shù)據(jù)處理、建模、監(jiān)控等各環(huán)節(jié),以及指標(biāo)、風(fēng)控、營銷等工具封裝為統(tǒng)一平臺上的不同功能模塊,而非彼此獨(dú)立的產(chǎn)品,屏蔽不同產(chǎn)品帶來的系統(tǒng)復(fù)雜性。如在數(shù)據(jù)開發(fā)環(huán)節(jié),DataCanvas RT實(shí)時決策中心 能夠直接使用上一環(huán)節(jié)已經(jīng)定義好的數(shù)據(jù)資產(chǎn),無需考慮底層數(shù)據(jù)庫認(rèn)證問題,從而提升數(shù)據(jù)分析的效率。

具備穩(wěn)定、高可用技術(shù)架構(gòu),能在提供高并發(fā)數(shù)據(jù)服務(wù)的同時,滿足實(shí)時數(shù)據(jù)分析的需要。九章云極DataCanvas產(chǎn)品采用分布式可擴(kuò)展架構(gòu),能夠?qū)崿F(xiàn)動態(tài)集群管理和彈性擴(kuò)容,支持高并發(fā)數(shù)據(jù)計算和處理;同時,其存算分離的數(shù)據(jù)存儲,能夠減少數(shù)據(jù)搬遷,支持多樣數(shù)據(jù)接入。在實(shí)時數(shù)據(jù)分析方面,系統(tǒng)具備強(qiáng)大的實(shí)時能力,能進(jìn)行批量加載和毫秒級查詢響應(yīng),支持實(shí)時寫入、實(shí)時更新。

對于開發(fā)人員,提供多種數(shù)據(jù)開發(fā)方式和DevOps能力,能顯著提升開發(fā)效率和體驗(yàn)。在數(shù)據(jù)開發(fā)方式方面,DataCanvas RT實(shí)時決策中心不僅內(nèi)置包含數(shù)據(jù)輸入源、窗口類、統(tǒng)計類、規(guī)則類、模型類的近百種預(yù)置算子,用戶能通過托拉拽預(yù)置算子,輕松高效構(gòu)建流數(shù)據(jù)作業(yè);同時,系統(tǒng)還支持通過在線編輯器定義SQL流作業(yè),支持UDF在線開發(fā)、作業(yè)調(diào)試監(jiān)控、作業(yè)段落編排等功能,輔助構(gòu)建實(shí)時數(shù)據(jù)分析模型和場景。在開發(fā)流程方面,九章云極DataCanvas提供一站式實(shí)時作業(yè)的DevOps,內(nèi)置可視化環(huán)境配置管理、透明環(huán)境部署、網(wǎng)頁調(diào)試、監(jiān)控告警等功能,實(shí)現(xiàn)數(shù)據(jù)開發(fā)全流程高效協(xié)作和規(guī)范化運(yùn)營管理。

具備多租戶管理及用戶權(quán)限管理等功能,幫助大型企業(yè)解決多用戶協(xié)作難題,保障數(shù)據(jù)安全。九章云極DataCanvas產(chǎn)品能夠以企業(yè)組織架構(gòu)為基礎(chǔ),進(jìn)行多租戶管理,對計算資源和數(shù)據(jù)資產(chǎn)進(jìn)行資源分配,同時提供統(tǒng)一的用戶登錄,支持基于角色的權(quán)限和定制化菜單,面對大型企業(yè)復(fù)雜人員構(gòu)成,實(shí)現(xiàn)千人千面的數(shù)據(jù)權(quán)限管理,保障集團(tuán)數(shù)據(jù)安全。

具備多家大型企業(yè)落地經(jīng)驗(yàn),提供全面貼合生產(chǎn)環(huán)境的業(yè)務(wù)場景。九章云極DataCanvas實(shí)時數(shù)據(jù)平臺已在金融、交通、通信、互聯(lián)網(wǎng)等各行業(yè)多家大型企業(yè)成功落地,在實(shí)時指標(biāo)加工和監(jiān)控、實(shí)時數(shù)據(jù)采集和加工、實(shí)時分析報表、實(shí)時風(fēng)控和交易反欺詐四大高度抽象的應(yīng)用場景基礎(chǔ)上,根據(jù)不同行業(yè)復(fù)雜的實(shí)時數(shù)據(jù)分析需求提供針對性解決方案。如在金融行業(yè),九章云極能提供客戶足跡分析、客服大數(shù)據(jù)分析、資金變動營銷、風(fēng)險實(shí)時類預(yù)警等典型應(yīng)用場景,幫助企業(yè)實(shí)現(xiàn)數(shù)據(jù)價值。

典型客戶:

浦發(fā)銀行,山東城商行聯(lián)盟,興業(yè)銀行

3.4DataOps

市場定義:

DataOps(數(shù)據(jù)研發(fā)運(yùn)營一體化)是人、流程和技術(shù)的高效組合,用于管理代碼、工具、基礎(chǔ)架構(gòu)和數(shù)據(jù)本身,從而實(shí)現(xiàn)數(shù)據(jù)領(lǐng)域應(yīng)用的敏捷開發(fā)和持續(xù)集成應(yīng)用,優(yōu)化和改進(jìn)數(shù)據(jù)生產(chǎn)者和數(shù)據(jù)消費(fèi)者的協(xié)作,持續(xù)交付數(shù)據(jù)流生產(chǎn)線。

甲方終端用戶:

數(shù)據(jù)工程師、數(shù)據(jù)架構(gòu)師、運(yùn)維工程師、測試工程師、數(shù)據(jù)分析師

甲方核心需求:

數(shù)據(jù)分析對企業(yè)的價值日益增長,企業(yè)內(nèi)部數(shù)據(jù)分析愈加民主化;與此同時,數(shù)據(jù)分析工具如BI、機(jī)器學(xué)習(xí)、可視化、數(shù)據(jù)挖掘等多元工具的運(yùn)用,以及復(fù)雜的數(shù)據(jù)用戶角色如數(shù)據(jù)工程師、數(shù)據(jù)管理源、報表開發(fā)人員等,大大增加了數(shù)據(jù)開發(fā)及運(yùn)維工作量以及數(shù)據(jù)應(yīng)用交付的協(xié)調(diào)難度。針對數(shù)據(jù)應(yīng)用開發(fā),企業(yè)面臨的主要需求是:

實(shí)現(xiàn)跨部門、多角色協(xié)同。原始數(shù)據(jù)從獲取、加工、就緒到產(chǎn)生價值的過程涉及多部門多角色協(xié)同,如數(shù)據(jù)架構(gòu)師、數(shù)據(jù)工程師、數(shù)據(jù)分析師、測試工程師、數(shù)據(jù)科學(xué)家、運(yùn)維工程師、數(shù)據(jù)管理員、數(shù)據(jù)分析師等,目前各角色之間目標(biāo)割裂、難協(xié)同,導(dǎo)致數(shù)據(jù)應(yīng)用開發(fā)周期長,企業(yè)需要一套工具能將多種角色組織在一起,高效協(xié)同完成數(shù)據(jù)應(yīng)用開發(fā),降低應(yīng)用開發(fā)延誤。

提高數(shù)據(jù)質(zhì)量。在數(shù)據(jù)應(yīng)用開發(fā)過程中,常由于數(shù)據(jù)質(zhì)量問題導(dǎo)致數(shù)據(jù)應(yīng)用難使用。數(shù)據(jù)質(zhì)量問題來源于多個方面,如提供數(shù)據(jù)源的業(yè)務(wù)系統(tǒng)沒及時規(guī)范地更新表結(jié)構(gòu)、數(shù)據(jù)口徑不一致、數(shù)據(jù)填報不規(guī)范、以及數(shù)據(jù)存儲架構(gòu)調(diào)整引發(fā)數(shù)據(jù)源意外改變等,企業(yè)需要體系化地對數(shù)據(jù)全生命周期進(jìn)行數(shù)據(jù)治理,保證數(shù)據(jù)質(zhì)量,讓數(shù)據(jù)可信。

提升數(shù)據(jù)開發(fā)效率。在實(shí)際的業(yè)務(wù)系統(tǒng)中,數(shù)據(jù)來源多種多樣,不同數(shù)據(jù)對數(shù)據(jù)處理的時延和數(shù)據(jù)量的要求不同,產(chǎn)生多種任務(wù)類型如離線同步、實(shí)時同步、離線計算、實(shí)時計算等,需要跨平臺相互配合完成多個異構(gòu)任務(wù)。因此開發(fā)人員面臨大量數(shù)據(jù)流轉(zhuǎn)規(guī)范、計算節(jié)點(diǎn)執(zhí)行順序編排等問題。此外,數(shù)據(jù)開發(fā)之后的部署上線也會花費(fèi)大量時間。企業(yè)需要一體化平臺管理跨平臺異構(gòu)數(shù)據(jù)任務(wù)開發(fā)、測試、部署上線,提高數(shù)據(jù)開發(fā)效率。

簡化數(shù)據(jù)運(yùn)維工作。當(dāng)前企業(yè)各產(chǎn)品應(yīng)用都會有監(jiān)控告警能力,比如離線任務(wù)突破基線、實(shí)時任務(wù)失敗、API調(diào)用失敗等,企業(yè)需要統(tǒng)一監(jiān)控平臺實(shí)現(xiàn)對多產(chǎn)品的監(jiān)控、告警。

保障數(shù)據(jù)安全。隨著數(shù)據(jù)的民主化、數(shù)據(jù)應(yīng)用的廣泛使用,數(shù)據(jù)安全也成為企業(yè)重點(diǎn)考慮的問題。數(shù)據(jù)安全涉及到系統(tǒng)安全、數(shù)據(jù)安全、安全審計等,企業(yè)需要系統(tǒng)化的工具保證數(shù)據(jù)生命周期各個環(huán)節(jié)安全。

廠商能力要求:

廠商應(yīng)具備一種或多種DataOps工具及技術(shù),支持實(shí)現(xiàn)數(shù)據(jù)應(yīng)用敏捷開發(fā)。如針對企業(yè)多種硬件環(huán)境、開發(fā)環(huán)境、發(fā)布環(huán)境、運(yùn)維流程等,廠商應(yīng)具備云原生、容器技術(shù)提供統(tǒng)一的開發(fā)、測試、運(yùn)維環(huán)境;如為滿足特殊數(shù)據(jù)應(yīng)用的時效性,廠商應(yīng)具備實(shí)時和流處理功能;針對復(fù)雜的數(shù)據(jù)類型及應(yīng)用場景,廠商應(yīng)具備多種分析引擎,如分布式處理引擎、離線批處理引擎等;針對數(shù)據(jù)質(zhì)量,廠商應(yīng)具備數(shù)據(jù)治理、數(shù)據(jù)血緣、數(shù)據(jù)標(biāo)準(zhǔn)的能力。此外,廠商還應(yīng)具備應(yīng)用集成、數(shù)據(jù)安全等功能。

廠商應(yīng)具備豐富的實(shí)踐經(jīng)驗(yàn),能基于DataOps理論為用戶制定合適的解決方案。一方面,數(shù)據(jù)開發(fā)運(yùn)營一體化涉及數(shù)據(jù)存儲、數(shù)據(jù)計算、數(shù)據(jù)開發(fā)、數(shù)據(jù)運(yùn)維等數(shù)據(jù)價值鏈各個環(huán)節(jié),需要廠商具有豐富的實(shí)踐經(jīng)驗(yàn)和成熟的DataOps理論協(xié)助企業(yè)挖掘痛點(diǎn)、分析原因、提出合適的解決方案;另一方面,企業(yè)數(shù)據(jù)開發(fā)、運(yùn)維、管理能力參差不齊,需要廠商兼容、優(yōu)化企業(yè)現(xiàn)有數(shù)據(jù)開發(fā)、運(yùn)維、管理功能及能力,針對缺失、薄弱的環(huán)節(jié)進(jìn)行定制化開發(fā),實(shí)現(xiàn)數(shù)據(jù)開發(fā)運(yùn)營一體化。

入選標(biāo)準(zhǔn):

1. 符合DataOps市場全部廠商能力要求;

2. 2021Q2至2022Q1該市場付費(fèi)客戶數(shù)量≥5個;

3.2021Q2至2022Q1該市場合同收入≥500萬元。

代表廠商評估:

(注:以下代表廠商評估均按廠商簡稱首字音序排序)

數(shù)造科技

廠商介紹:

數(shù)造科技成立于2015年,是新一代數(shù)據(jù)開發(fā)管理能力提供商,將先進(jìn)的DataOps方法論與領(lǐng)先的大數(shù)據(jù)技術(shù)進(jìn)行產(chǎn)品化落地,幫助企業(yè)建立并打通數(shù)據(jù)開發(fā)、治理、運(yùn)營、服務(wù)各環(huán)節(jié)能力,實(shí)現(xiàn)數(shù)據(jù)全鏈路一體化高效管理和應(yīng)用?,F(xiàn)已服務(wù)金融、政務(wù)、零售、能源電力、制造等領(lǐng)域的多家頭部企業(yè)。

產(chǎn)品服務(wù)介紹:

數(shù)造科技自主研發(fā)的核心產(chǎn)品DataBuilder是基于DataOps方法論打造的新一代敏捷數(shù)據(jù)管理平臺,架構(gòu)于湖倉平臺之上,實(shí)現(xiàn)數(shù)據(jù)同步、數(shù)據(jù)開發(fā)、任務(wù)提測、任務(wù)發(fā)布、運(yùn)維調(diào)度全流程敏捷協(xié)作,同時通過統(tǒng)一元數(shù)據(jù)和數(shù)據(jù)目錄,形成便于快速自助查詢、血緣追溯和質(zhì)量檢測的數(shù)據(jù)資產(chǎn)體系,為企業(yè)提供中臺化的數(shù)據(jù)管理運(yùn)營服務(wù)全鏈路能力建設(shè)解決方案,挖掘數(shù)據(jù)要素潛能。

廠商評估:

數(shù)造科技聚焦于數(shù)據(jù)全生命周期的開發(fā)和管控兩大核心環(huán)節(jié),以其在DataOps領(lǐng)域多年的研發(fā)經(jīng)驗(yàn)和多家大型客戶服務(wù)實(shí)踐,能夠針對大型企業(yè)數(shù)據(jù)任務(wù)量大、開發(fā)工具多、運(yùn)維壓力大的普遍問題,提供一站式數(shù)據(jù)開發(fā)、治理、運(yùn)營的完整工具流,配合任務(wù)編排和持續(xù)集成發(fā)布能力,支持?jǐn)?shù)據(jù)工程的高質(zhì)高效開發(fā)投產(chǎn),同時把數(shù)據(jù)治理工作融入到開發(fā)過程中,通過標(biāo)準(zhǔn)流程和自動化能力,促進(jìn)數(shù)據(jù)開發(fā)的質(zhì)量和數(shù)據(jù)治理效率。

通過數(shù)據(jù)沙箱環(huán)境配合持續(xù)集成發(fā)布,大幅提升發(fā)布效率和質(zhì)量。企業(yè)數(shù)據(jù)應(yīng)用開發(fā)上線過程普遍面臨開發(fā)協(xié)作和缺少測試數(shù)據(jù)兩方面難題,開發(fā)之間往往會因?yàn)閿?shù)據(jù)和資源之間的搶占導(dǎo)致團(tuán)隊開發(fā)效率降低,而開發(fā)缺少獨(dú)立測試環(huán)境和合適的測試數(shù)據(jù)則嚴(yán)重影響數(shù)據(jù)開發(fā)的質(zhì)量。數(shù)造科技產(chǎn)品通過沙箱環(huán)境給數(shù)據(jù)工程師和數(shù)據(jù)科學(xué)家提供開發(fā)工具和實(shí)驗(yàn)數(shù)據(jù),他們可在其中編寫代碼和測試任務(wù),而不會影響生產(chǎn)環(huán)境,保證測試的充分性,有效提升數(shù)據(jù)任務(wù)質(zhì)量。此外,數(shù)造科技產(chǎn)品通過構(gòu)建完整的從任務(wù)開發(fā)、單元測試、任務(wù)提測到任務(wù)上線和生產(chǎn)運(yùn)維全流程體系,實(shí)現(xiàn)數(shù)據(jù)開發(fā)上線的標(biāo)準(zhǔn)化持續(xù)運(yùn)作。

能搭建自動化的數(shù)據(jù)開發(fā)運(yùn)營全流程工具鏈,配合任務(wù)編排能力,在數(shù)據(jù)開發(fā)者、管理者、消費(fèi)者等角色間形成無縫銜接的高效順暢協(xié)作范式。一方面,數(shù)造科技通過將從原始數(shù)據(jù)、加工數(shù)據(jù)到業(yè)務(wù)就緒數(shù)據(jù)的集成、開發(fā)、部署、運(yùn)維全生命周期形成敏捷的數(shù)據(jù)管道,將專業(yè)數(shù)據(jù)人員需要的所有工具、步驟和流程簡化為一個易于使用、可配置的端到端系統(tǒng),打通數(shù)據(jù)鏈上不同角色協(xié)作通道,同時用高度自動化流程規(guī)范所有環(huán)節(jié),代替部分手工操作,從而最大化組織數(shù)據(jù)的價值。另一方面,數(shù)造科技產(chǎn)品提供任務(wù)編排能力,能根據(jù)數(shù)據(jù)開發(fā)和分析策略來調(diào)整任務(wù)的順序、依賴關(guān)系,解決大型企業(yè)多任務(wù)同時進(jìn)行的協(xié)作問題。

提供主動式數(shù)據(jù)治理功能,最大化數(shù)據(jù)資產(chǎn)的服務(wù)價值。數(shù)造科技產(chǎn)品能夠在統(tǒng)一的數(shù)據(jù)標(biāo)準(zhǔn)和規(guī)范指引下,進(jìn)行數(shù)據(jù)生命周期各環(huán)節(jié)的設(shè)計態(tài)到運(yùn)行態(tài)的聯(lián)動式互相管理和約束,從而把數(shù)據(jù)治理工作植入到數(shù)據(jù)開發(fā)和數(shù)據(jù)消費(fèi)的過程中。同時主動式數(shù)據(jù)治理還提供業(yè)務(wù)協(xié)作數(shù)據(jù)資產(chǎn)管理能力,通過智能打標(biāo)、使用引導(dǎo)和資產(chǎn)協(xié)作增強(qiáng)用戶對數(shù)據(jù)的理解水平,提升看數(shù)效率,賦予數(shù)據(jù)消費(fèi)者自助式探索分析能力。

具備成熟的場景化解決方案和定制化能力,能有效保障產(chǎn)品在不同行業(yè)成功落地。數(shù)造科技基于對不同行業(yè)的多家頭部客戶的服務(wù)經(jīng)驗(yàn),已在銀行、保險、零售、能源、政府等多個領(lǐng)域形成完善的場景化解決方案,針對數(shù)字化基礎(chǔ)較弱的企業(yè),能直接提供成熟產(chǎn)品及解決方案。同時,數(shù)造科技具備較強(qiáng)的定制化能力,對于數(shù)字化基礎(chǔ)較好的企業(yè),能夠在貼合企業(yè)原本數(shù)據(jù)開發(fā)管理模式的基礎(chǔ)上,最大化兼容和復(fù)用其現(xiàn)有數(shù)字化成果,針對其缺失能力補(bǔ)充對應(yīng)產(chǎn)品,并進(jìn)行定制化開發(fā),實(shí)現(xiàn)數(shù)據(jù)開發(fā)運(yùn)營一體化的目標(biāo)。

典型客戶:

南方電網(wǎng)、沃爾瑪(中國)、招商銀行、平安產(chǎn)險、太平保險

3.5數(shù)據(jù)中臺

市場定義:

數(shù)據(jù)中臺是在統(tǒng)一數(shù)據(jù)標(biāo)準(zhǔn)規(guī)范基礎(chǔ)上,提供數(shù)據(jù)接入、數(shù)據(jù)開發(fā)、數(shù)據(jù)資產(chǎn)管理、數(shù)據(jù)分析、數(shù)據(jù)服務(wù)等能力的數(shù)據(jù)資產(chǎn)管理和服務(wù)平臺,幫助企業(yè)實(shí)現(xiàn)數(shù)據(jù)集中管理和服務(wù)。

甲方終端用戶:

企業(yè)數(shù)據(jù)工程師、數(shù)據(jù)分析師、業(yè)務(wù)分析師

甲方核心需求:

近年來,隨著企業(yè)信息化、數(shù)字化進(jìn)程加快,企業(yè)內(nèi)部各業(yè)務(wù)系統(tǒng)數(shù)量增加,多系統(tǒng)數(shù)據(jù)重復(fù)計算、數(shù)據(jù)難以集成利用、數(shù)據(jù)質(zhì)量堪憂等現(xiàn)象普遍。為打破“數(shù)據(jù)孤島”,提升數(shù)據(jù)服務(wù)能力,需要進(jìn)行數(shù)據(jù)中臺建設(shè)。綜合來看,企業(yè)對數(shù)據(jù)中臺的建設(shè)普遍具有以下幾方面需求:

實(shí)現(xiàn)數(shù)據(jù)統(tǒng)一接入和集成:許多大型企業(yè)的數(shù)據(jù)存儲基礎(chǔ)設(shè)施建設(shè)普遍以業(yè)務(wù)需求為導(dǎo)向分批分次建設(shè),沒有形成統(tǒng)一規(guī)劃,導(dǎo)致數(shù)據(jù)孤島和數(shù)據(jù)碎片化問題,在數(shù)據(jù)調(diào)用時需要分別從不同的系統(tǒng)、數(shù)據(jù)庫中取數(shù),異常繁瑣。因此,企業(yè)需要通過建設(shè)統(tǒng)一平臺,對多元異構(gòu)數(shù)據(jù)進(jìn)行統(tǒng)一接入和匯聚,形成集團(tuán)層面的數(shù)據(jù)底座。

提升數(shù)據(jù)質(zhì)量,形成統(tǒng)一數(shù)據(jù)資產(chǎn):企業(yè)在多年數(shù)據(jù)建設(shè)的過程中,搭建了多種不同的數(shù)據(jù)倉庫或是基于開源技術(shù)框架的數(shù)據(jù)存儲工具,數(shù)據(jù)標(biāo)準(zhǔn)、口徑不統(tǒng)一,數(shù)據(jù)指標(biāo)混亂,質(zhì)量參差不齊,無法集中對外提供數(shù)據(jù)查詢和數(shù)據(jù)服務(wù)。因此,企業(yè)需要通過標(biāo)準(zhǔn)化數(shù)據(jù)治理,完成數(shù)據(jù)的資產(chǎn)化,并實(shí)現(xiàn)統(tǒng)一調(diào)度和開發(fā)的能力。

統(tǒng)一數(shù)據(jù)開發(fā),提升數(shù)據(jù)服務(wù)能力。數(shù)據(jù)開發(fā)涉及復(fù)雜的流程,技術(shù)門檻較高,面對多個業(yè)務(wù)部門的需求,企業(yè)存在重復(fù)開發(fā)和建設(shè)問題,造成成本浪費(fèi),需要建設(shè)企業(yè)統(tǒng)一的數(shù)據(jù)開發(fā)與服務(wù)平臺,將數(shù)據(jù)資產(chǎn)轉(zhuǎn)化為業(yè)務(wù)可用的數(shù)據(jù)服務(wù),以實(shí)現(xiàn)能力復(fù)用與服務(wù)共享。

確保數(shù)據(jù)資產(chǎn)能夠持續(xù)高效運(yùn)營和提供服務(wù)。數(shù)據(jù)中臺不僅是對企業(yè)數(shù)據(jù)采、存、管、算、用全流程的體系化建設(shè),也是對企業(yè)數(shù)據(jù)應(yīng)用習(xí)慣,甚至企業(yè)組織和文化層面的重大革新,因此數(shù)據(jù)中臺搭建僅僅是第一步,更重要的是如何采用一套科學(xué)的管理和使用方法,讓中臺持續(xù)發(fā)揮其數(shù)據(jù)資產(chǎn)運(yùn)營服務(wù)的價值。

廠商能力要求:

適配多種技術(shù)架構(gòu),幫助企業(yè)有效屏蔽底層技術(shù)棧差異。廠商首先需要開發(fā)出集成度高的數(shù)據(jù)接口、能廣泛適用各類數(shù)據(jù)源的數(shù)據(jù)采集工作,打通數(shù)據(jù)倉庫和數(shù)據(jù)湖之間元數(shù)據(jù)的移動和訪問,同時能夠?qū)Y(jié)構(gòu)化與非結(jié)構(gòu)化數(shù)據(jù)進(jìn)行集中存儲與處理。同時,廠商還需要考慮到企業(yè)數(shù)據(jù)存儲的擴(kuò)容需求,保證用戶能夠穩(wěn)定通過增加存儲節(jié)點(diǎn)應(yīng)對數(shù)據(jù)量的增長。

提供數(shù)據(jù)治理服務(wù),構(gòu)建全面的數(shù)據(jù)資產(chǎn)管理體系。首先,廠商需要具備數(shù)據(jù)治理和咨詢規(guī)劃能力,通過對企業(yè)數(shù)據(jù)進(jìn)行全面盤點(diǎn),對數(shù)據(jù)指標(biāo)進(jìn)行分類,制定數(shù)據(jù)標(biāo)準(zhǔn),劃分?jǐn)?shù)據(jù)安全等級等,將企業(yè)數(shù)據(jù)資產(chǎn)化。其次,廠商需要通過成熟的中臺產(chǎn)品實(shí)現(xiàn)數(shù)據(jù)開發(fā)和處理的標(biāo)準(zhǔn)化流程,建立數(shù)據(jù)類目標(biāo)簽體系,便于數(shù)據(jù)檢索和維護(hù),實(shí)現(xiàn)數(shù)據(jù)治理的完整閉環(huán)。

能構(gòu)建完整的數(shù)據(jù)開發(fā)鏈路,形成高效數(shù)據(jù)服務(wù)。廠商數(shù)據(jù)中臺產(chǎn)品需要提供統(tǒng)一的數(shù)據(jù)服務(wù)接口,以及實(shí)時和離線開發(fā)工具,同時配合智能調(diào)度、智能運(yùn)維、監(jiān)控告警等一系列工具,實(shí)現(xiàn)數(shù)據(jù)資產(chǎn)的統(tǒng)一開發(fā)和調(diào)用,提升數(shù)據(jù)開發(fā)人員和分析人員的效率,高效靈活地支撐前臺業(yè)務(wù)。其次,廠商產(chǎn)品需具備數(shù)據(jù)服務(wù)能力,提供將數(shù)據(jù)資產(chǎn)快速轉(zhuǎn)化為業(yè)務(wù)可用數(shù)據(jù)服務(wù)的功能體系,并實(shí)現(xiàn)數(shù)據(jù)服務(wù)的管理和調(diào)度。

具備豐富落地經(jīng)驗(yàn),能提供企業(yè)數(shù)據(jù)中臺建設(shè)咨詢和定制化服務(wù)。企業(yè)需要具備較強(qiáng)的咨詢服務(wù)能力,需為企業(yè)在數(shù)據(jù)運(yùn)營體系、組織協(xié)同和數(shù)據(jù)應(yīng)用場景拓展三方面提供切實(shí)可行的方案,并通過培訓(xùn)等方式強(qiáng)化和落實(shí)。此外,不同行業(yè)、不同規(guī)模的企業(yè)其組織文化、業(yè)務(wù)場景和數(shù)字化水平差異巨大,因此數(shù)據(jù)中臺的定制化程度較高,廠商需要在積累大量客戶服務(wù)經(jīng)驗(yàn)基礎(chǔ)上,加深其對不同行業(yè)和業(yè)務(wù)場景的認(rèn)知和理解,提升面向不同行業(yè)的解決方案成熟度以及定制化水平。

入選標(biāo)準(zhǔn):

1. 符合數(shù)據(jù)中臺全部廠商能力要求;

2. 2021Q2至2022Q1該市場付費(fèi)客戶數(shù)量≥8個

3. 2021Q2至2022Q1該市場合同收入≥1000萬元

代表廠商評估:

(注:以下代表廠商評估均按廠商簡稱首字音序排序)

每日互動

廠商介紹:

每日互動股份有限公司(簡稱“每日互動”)成立于2010年,是專業(yè)的數(shù)據(jù)智能服務(wù)商,致力于用數(shù)據(jù)讓產(chǎn)業(yè)更智能。公司在互聯(lián)網(wǎng)運(yùn)營、用戶增長、品牌營銷、金融風(fēng)控等場景積累了豐富經(jīng)驗(yàn),為互聯(lián)網(wǎng)企業(yè)和政府部門提供豐富的數(shù)據(jù)智能產(chǎn)品、服務(wù)與解決方案。

產(chǎn)品服務(wù)介紹:

每日治數(shù)平臺DIOS定位數(shù)據(jù)智能操作系統(tǒng),包含數(shù)據(jù)治理平臺、數(shù)據(jù)建模平臺、機(jī)器學(xué)習(xí)平臺、標(biāo)簽平臺、數(shù)據(jù)開發(fā)平臺、可視化平臺、數(shù)據(jù)服務(wù)平臺、調(diào)度平臺等八個功能組件,為用戶提供可視化向?qū)降牟僮骱徒换ソ缑?#xff0c;使開發(fā)人員和工程師能夠以項(xiàng)目模式省時省力地進(jìn)行數(shù)據(jù)治理和開發(fā)工作;同時,平臺提供全生態(tài)低代碼和無代碼應(yīng)用構(gòu)建能力,使得無開發(fā)背景的業(yè)務(wù)人員,能夠便捷地應(yīng)用數(shù)據(jù)、靈活地分析數(shù)據(jù);此外,平臺還提供完善的安全管控機(jī)制,讓企業(yè)和組織安心地管理和使用數(shù)據(jù)資產(chǎn)。與傳統(tǒng)中臺不同,每日治數(shù)平臺DIOS操作便捷、輕量、易上手,對外輸出治數(shù)能力,已在政務(wù)、品牌營銷、交通、金融等行業(yè)積累豐富的實(shí)踐案例。

廠商評估:

每日治數(shù)平臺DIOS功能完善,能為用戶提供數(shù)據(jù)接入、數(shù)據(jù)治理以及數(shù)據(jù)應(yīng)用等一站式數(shù)據(jù)工作平臺。此外,每日治數(shù)平臺DIOS數(shù)據(jù)應(yīng)用組件門檻低,易上手,能加速企業(yè)應(yīng)用落地,幫助企業(yè)沉淀經(jīng)驗(yàn)建立方法論體系。

每日治數(shù)平臺DIOS提供數(shù)據(jù)接入、數(shù)據(jù)治理到數(shù)據(jù)應(yīng)用的一站式工作平臺。數(shù)據(jù)接入方面,每日治數(shù)平臺支持分布式數(shù)據(jù)接入,能穩(wěn)定高效實(shí)現(xiàn)多源異構(gòu)數(shù)據(jù)集成。此外,通過每日治數(shù)平臺DIOS,用戶可實(shí)現(xiàn)自身數(shù)據(jù)與每日互動等第三方數(shù)據(jù)打通,豐富數(shù)據(jù)來源。數(shù)據(jù)治理方面,每日治數(shù)平臺DIOS提供行業(yè)數(shù)據(jù)標(biāo)準(zhǔn)定義、數(shù)據(jù)資產(chǎn)管理、數(shù)據(jù)質(zhì)量監(jiān)控、資產(chǎn)地圖展示等功能,幫助客戶提升數(shù)據(jù)質(zhì)量、搭建數(shù)據(jù)資產(chǎn)中心。數(shù)據(jù)應(yīng)用方面,每日治數(shù)平臺DIOS提供數(shù)據(jù)建模、機(jī)器學(xué)習(xí)、數(shù)據(jù)標(biāo)簽、可視化等功能組件,為用戶提供歸因、預(yù)測等智能業(yè)務(wù)應(yīng)用。

每日治數(shù)平臺DIOS的數(shù)據(jù)應(yīng)用組件具有可視化、低代碼的特性,門檻低,用戶易上手。如可視化平臺內(nèi)置30余種主流圖表,業(yè)務(wù)人員可自助搭建數(shù)據(jù)看板,進(jìn)行業(yè)務(wù)趨勢、道路運(yùn)行、投放轉(zhuǎn)化、人口流動等場景的數(shù)據(jù)分析;機(jī)器學(xué)習(xí)平臺提供豐富算法、可視化的模型指標(biāo),非建模專業(yè)人員也可快速完成算法開發(fā)、模型訓(xùn)練、模型評估、在線預(yù)測等機(jī)器學(xué)習(xí)全流程;建模平臺支持低代碼數(shù)據(jù)建模,業(yè)務(wù)人員通過“拖拉拽”式的簡單操作即可完成數(shù)據(jù)建模,便捷高效。

每日治數(shù)平臺DIOS幫助企業(yè)沉淀自身數(shù)據(jù)經(jīng)驗(yàn),建立方法論體系,提升數(shù)據(jù)加工效率。每日治數(shù)平臺DIOS支持用戶將可復(fù)用的數(shù)據(jù)能力、業(yè)務(wù)能力、效率工具沉淀成企業(yè)獨(dú)有的數(shù)據(jù)產(chǎn)品和工具。如可視化平臺中,業(yè)務(wù)人員可將自建的通用主題看板沉淀成看板模板,供團(tuán)隊復(fù)用,提升工作效率。此外,用戶也可以積累企業(yè)獨(dú)有的模型算法庫、業(yè)務(wù)標(biāo)簽洞察體系等,供企業(yè)內(nèi)部業(yè)務(wù)人員、分析師以及開發(fā)人員查看、分析和應(yīng)用。

每日互動在政務(wù)、高速、金融、互聯(lián)網(wǎng)、品牌營銷等多個領(lǐng)域積累深厚,加速用戶數(shù)據(jù)應(yīng)用落地。一方面每日互動積累了豐富的行業(yè)標(biāo)簽和特征數(shù)據(jù)以及大量在實(shí)際場景復(fù)用度高的算法模型,內(nèi)嵌到每日治數(shù)平臺DIOS中,形成可靈活調(diào)用的能力組件、行業(yè)標(biāo)簽?zāi)0濉⑺惴P蛶斓?#xff0c;開箱即用,幫用戶快速進(jìn)行應(yīng)用落地及業(yè)務(wù)論證;另一方面,多年的行業(yè)積累使得每日互動團(tuán)隊在品牌營銷、智慧高速、智能政務(wù)、金融風(fēng)控等領(lǐng)域積累專業(yè)知識和深度理解,能準(zhǔn)確挖掘客戶需求,并與客戶的工程師、分析師、建模師密切合作,解決客戶業(yè)務(wù)場景中的各種問題,將數(shù)據(jù)應(yīng)用真正落地,釋放數(shù)據(jù)價值。比如,在品牌營銷領(lǐng)域,每日互動不僅幫助品牌主完善和治理數(shù)據(jù)資產(chǎn),還協(xié)助品牌挖掘用戶數(shù)據(jù),根據(jù)樣本人群特征,搭建購買預(yù)測模型,明確高潛力購買人群,實(shí)現(xiàn)定向投放。

3.6云數(shù)據(jù)平臺

市場定義:

云數(shù)據(jù)平臺是具備多租戶、彈性擴(kuò)展、計算存儲分離等特性的新一代數(shù)據(jù)平臺,提供數(shù)據(jù)存儲計算、數(shù)據(jù)集成、數(shù)據(jù)開發(fā)、數(shù)據(jù)治理、運(yùn)營管理、數(shù)據(jù)分析、數(shù)據(jù)共享和服務(wù)等一站式能力,支持對各類結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)的處理,以及BI、數(shù)據(jù)科學(xué)、AI/ML、實(shí)時分析等數(shù)據(jù)應(yīng)用場景,從而幫助企業(yè)低成本地獲得自助式、可按需使用的數(shù)據(jù)平臺服務(wù),并實(shí)現(xiàn)安全的跨組織數(shù)據(jù)共享和消費(fèi)。

甲方終端用戶:

企業(yè)管理層、IT部門、業(yè)務(wù)部門

甲方核心需求:

企業(yè)隨著數(shù)字化轉(zhuǎn)型的推進(jìn),數(shù)據(jù)規(guī)模和數(shù)據(jù)應(yīng)用場景快速增長,而傳統(tǒng)架構(gòu)的數(shù)據(jù)倉庫、數(shù)據(jù)湖等數(shù)據(jù)基礎(chǔ)設(shè)施,由于不具備彈性擴(kuò)容、多租戶管理等能力,導(dǎo)致使用門檻高、擴(kuò)容和運(yùn)維成本高、數(shù)據(jù)利用效率低、組織間數(shù)據(jù)共享難等問題日益突出。針對諸多問題,企業(yè)需求具體如下。

數(shù)智化時代,以數(shù)據(jù)驅(qū)動業(yè)務(wù)的趨勢愈發(fā)明顯,然而在傳統(tǒng)數(shù)據(jù)應(yīng)用體系下,企業(yè)普遍缺乏全流程的數(shù)據(jù)工具,不同模塊間鏈接不通暢、數(shù)據(jù)利用效率低等問題突出,因此通過一站式的數(shù)據(jù)產(chǎn)品及服務(wù),降低開發(fā)成本、減少開發(fā)時間、實(shí)現(xiàn)數(shù)據(jù)價值最大化是企業(yè)現(xiàn)階段重點(diǎn)需求。

為全方面激發(fā)數(shù)據(jù)價值,企業(yè)需要跨部門、跨業(yè)務(wù)線甚至跨企業(yè)、跨地域的數(shù)據(jù)共享與聯(lián)動分析,并可能需要引入外部數(shù)據(jù)源進(jìn)行數(shù)據(jù)補(bǔ)充。因此,在保證數(shù)據(jù)安全、自主可控的前提下實(shí)現(xiàn)跨組織的數(shù)據(jù)共享與分析是企業(yè)的另一需求。

傳統(tǒng)數(shù)據(jù)平臺系統(tǒng),由于擴(kuò)展彈性較差,且不支持存儲和計算獨(dú)立擴(kuò)容,導(dǎo)致閑時存儲、計算資源浪費(fèi),且投資成本高,因此企業(yè)需要降低數(shù)據(jù)庫及算力投資、運(yùn)維成本,實(shí)現(xiàn)實(shí)際需求與可調(diào)用能力的精準(zhǔn)匹配。

隨著競爭的逐漸加劇,越來越多的企業(yè)決策者和業(yè)務(wù)人員,都期望能夠?qū)崿F(xiàn)T+1甚至 T+0 的實(shí)時數(shù)據(jù)反饋,從而基于更有時效性的數(shù)據(jù)進(jìn)行業(yè)務(wù)決策,避免因決策周期過長而導(dǎo)致錯失商機(jī),如何實(shí)時地集成、調(diào)用、分析數(shù)據(jù)也是企業(yè)重要關(guān)注點(diǎn)。

廠商能力要求:

廠商需要提供云數(shù)據(jù)平臺產(chǎn)品和相關(guān)解決方案,需具備以下能力:

能為企業(yè)提供從數(shù)據(jù)存儲、數(shù)據(jù)集成、到數(shù)據(jù)分析應(yīng)用的一站式數(shù)據(jù)服務(wù),通過產(chǎn)品的整體封裝,屏蔽了底層技術(shù)框架的復(fù)雜性,幫助企業(yè)建立易用的全流程數(shù)據(jù)工具體系,實(shí)現(xiàn)數(shù)據(jù)價值的深度挖掘,并提供/支持BI可視化功能,直觀簡約的體現(xiàn)數(shù)據(jù)價值,賦能企業(yè)管理層和業(yè)務(wù)人員。

具備多租戶管理能力,實(shí)現(xiàn)跨組織數(shù)據(jù)共享與消費(fèi),使企業(yè)能夠?qū)碜詢?nèi)部不同業(yè)務(wù)部門、分支機(jī)構(gòu)以及外部不同組織的數(shù)據(jù)源進(jìn)行數(shù)據(jù)專區(qū)隔離管理,在保持各數(shù)據(jù)源獨(dú)立性、數(shù)據(jù)安全性的前提下,實(shí)現(xiàn)跨組織的數(shù)據(jù)共享,并以此來提升企業(yè)數(shù)據(jù)建模能力,更好的為業(yè)務(wù)賦能。

基于云環(huán)境,將整體數(shù)據(jù)平臺云化,利用云服務(wù)器、分布式存儲等技術(shù),產(chǎn)品采用計算存儲分離架構(gòu),具備彈性可伸縮能力,根據(jù)企業(yè)需求實(shí)現(xiàn)在公有云、私有云、混合云等部署環(huán)境下的一鍵擴(kuò)縮容、按需計費(fèi),并大幅降低運(yùn)維成本。

具備更快捷的復(fù)雜查詢性能,從而明顯降低批處理、即席查詢等任務(wù)所需的時間,支持實(shí)時分析,保證數(shù)據(jù)處理能力的高時效。

支持主流的開源生態(tài),并提供智能化的運(yùn)維管控平臺,實(shí)時監(jiān)控數(shù)據(jù)平臺運(yùn)行狀態(tài),并提供多種方式的告警服務(wù)。

入選標(biāo)準(zhǔn):

1. 符合數(shù)據(jù)中臺全部廠商能力要求;

2. 2021Q2至2022Q1該市場付費(fèi)客戶數(shù)量≥5個

3. 2021Q2至2022Q1該市場合同收入≥1000萬元

代表廠商評估:

(注:以下代表廠商評估均按廠商簡稱首字音序排序)

科杰科技

廠商介紹:

科杰科技是一家數(shù)據(jù)能力構(gòu)建商,核心技術(shù)團(tuán)隊擁有豐富的頭部互聯(lián)網(wǎng)企業(yè)云數(shù)據(jù)平臺搭建及運(yùn)營經(jīng)驗(yàn),致力于將成熟完備的數(shù)據(jù)底座產(chǎn)品與多業(yè)態(tài)復(fù)雜場景的最佳實(shí)踐有機(jī)融合,為企業(yè)提供數(shù)據(jù)管理、開發(fā)挖掘、運(yùn)維一體化的整套方案,助力企業(yè)快速構(gòu)建數(shù)據(jù)能力,實(shí)現(xiàn)高度規(guī)范化、敏捷化的數(shù)據(jù)工作協(xié)同與數(shù)據(jù)應(yīng)用創(chuàng)新。現(xiàn)已服務(wù)多家政府單位及金融、能源、汽車、零售等多行業(yè)頭部企業(yè)。

產(chǎn)品服務(wù)介紹:

科杰科技核心產(chǎn)品Keen Data lakehouse是采用云原生湖倉一體架構(gòu)的大數(shù)據(jù)底座,擁有大數(shù)據(jù)基礎(chǔ)平臺 Keen KDP、數(shù)據(jù)開發(fā)管理平臺Keen BDP、數(shù)據(jù)同步系統(tǒng)Keen Dsync、實(shí)時計算平臺Keen Stream、數(shù)據(jù)標(biāo)準(zhǔn)產(chǎn)品Keen DSM、數(shù)據(jù)質(zhì)量產(chǎn)品Keen DQM、主數(shù)據(jù)管理平臺Keen MDM、數(shù)據(jù)科學(xué)平臺Keen DSP、數(shù)據(jù)資產(chǎn)目錄Keen Asset、數(shù)據(jù)指標(biāo)平臺Keen Index、數(shù)據(jù)服務(wù)平臺Keen DAAS 、數(shù)據(jù)標(biāo)簽平臺Keen TAG等12大功能模塊,在實(shí)現(xiàn)多云資源統(tǒng)一納管、彈性擴(kuò)展和靈活調(diào)度的基礎(chǔ)上,同時滿足數(shù)據(jù)統(tǒng)一采集、存儲、開發(fā)、管理和服務(wù)的需求,具有高性能高穩(wěn)定性的特性。

廠商評估:

科杰科技基于自身領(lǐng)先的大數(shù)據(jù)與云原生技術(shù)能力,形成了具有良好兼容性、擴(kuò)展性和易用性的云數(shù)據(jù)平臺產(chǎn)品,配合其久經(jīng)驗(yàn)證的落地方法論,幫助企業(yè)建設(shè)全域數(shù)據(jù)資產(chǎn)開發(fā)、管理和運(yùn)營能力。

產(chǎn)品體系完整,能夠一站式賦予企業(yè)全鏈路數(shù)據(jù)能力。科杰科技Keen Data Lakehouse 12大功能模塊提供從數(shù)據(jù)采集、開發(fā)、治理到數(shù)據(jù)資產(chǎn)管理、數(shù)據(jù)建模分析、數(shù)據(jù)服務(wù)全鏈路數(shù)據(jù)能力,能夠一站式滿足企業(yè)云上數(shù)據(jù)管理和開發(fā)應(yīng)用需求。

采用領(lǐng)先的技術(shù)架構(gòu),支持企業(yè)數(shù)字化長遠(yuǎn)發(fā)展。科杰科技數(shù)據(jù)底座采用業(yè)內(nèi)領(lǐng)先的云原生與湖倉一體技術(shù)架構(gòu),支持萬億級別以上大數(shù)據(jù)存儲計算、分析挖掘,具備萬臺節(jié)點(diǎn)、千人協(xié)同開發(fā)的能力。同時,采用分布式、高可用、可擴(kuò)展的存儲架構(gòu),讓企業(yè)無需進(jìn)行架構(gòu)和模塊代碼調(diào)整即可增加服務(wù)器數(shù)量,性能隨節(jié)點(diǎn)數(shù)量線性上升,便捷滿足系統(tǒng)業(yè)務(wù)擴(kuò)容需要,可支持企業(yè)未來5-10年數(shù)據(jù)能力建設(shè),大幅減少實(shí)施部署成本?;陬I(lǐng)先技術(shù)架構(gòu)的數(shù)據(jù)底座,可以支撐企業(yè)未來長期的數(shù)字化轉(zhuǎn)型需求。

兼容性佳,支持異構(gòu)資源的統(tǒng)一納管。在兼容性方面,科杰科技大數(shù)據(jù)底座產(chǎn)品解決了不同技術(shù)框架間在實(shí)時/離線一體計算、統(tǒng)一資源調(diào)度和ACID事務(wù)性等方面的適配問題,能夠同時兼容Oracle、MPP等數(shù)據(jù)庫,并涵蓋Hive、Spark、Flink等Hadoop原生組件,從而對企業(yè)原有數(shù)據(jù)庫進(jìn)行最大程度復(fù)用,避免重復(fù)建設(shè),形成對云遷移或混合云部署的良好支撐。

易用性強(qiáng),能實(shí)現(xiàn)流程自動化,賦能組織高效開展數(shù)據(jù)協(xié)作和運(yùn)營。產(chǎn)品整體設(shè)計融合DataOps方法論,貫穿并落實(shí)進(jìn)數(shù)據(jù)部署、治理、運(yùn)維、到最終應(yīng)用于生產(chǎn)的全生命周期,提升了數(shù)據(jù)工程師、數(shù)據(jù)分析師等不同角色的協(xié)作水平,并賦予企業(yè)大規(guī)模跨團(tuán)隊協(xié)同開發(fā)的能力。同時,通過固定流程將部分?jǐn)?shù)據(jù)工作自動化,降低了數(shù)據(jù)分析應(yīng)用的技術(shù)門檻。

擁有最佳實(shí)踐方法論,有效幫助企業(yè)全域數(shù)據(jù)資產(chǎn)體系落地。科杰科技擁有大型互聯(lián)網(wǎng)企業(yè)大數(shù)據(jù)團(tuán)隊基因,并結(jié)合多年服務(wù)經(jīng)驗(yàn)形成了獨(dú)有企業(yè)數(shù)據(jù)平臺建設(shè)流程與迭代方法論。一方面,針對數(shù)據(jù)工作的長流程與高度復(fù)雜性,科杰科技能夠快速為企業(yè)梳理和盤點(diǎn)現(xiàn)有數(shù)據(jù),構(gòu)建通用數(shù)據(jù)層次和管理架構(gòu),根據(jù)企業(yè)業(yè)務(wù)需求確立數(shù)據(jù)標(biāo)準(zhǔn)和規(guī)范。另一方面,針對企業(yè)組織架構(gòu)、管理習(xí)慣的不同特點(diǎn),以及在數(shù)據(jù)管理和使用上的不同角色,科杰科技能夠?qū)ζ髽I(yè)不同業(yè)務(wù)線、集團(tuán)和分公司之間的多租戶數(shù)據(jù)權(quán)限、數(shù)據(jù)安全、存儲壓力等問題提出針對性解決方案,并將項(xiàng)目管理、項(xiàng)目結(jié)果復(fù)用等數(shù)據(jù)工作管理辦法通過培訓(xùn)方式輸入企業(yè)內(nèi)部,實(shí)現(xiàn)企業(yè)全域數(shù)據(jù)資產(chǎn)管理體系的落地。

典型客戶:

中金公司、貴陽銀行、永旺

數(shù)新網(wǎng)絡(luò)

廠商介紹:

浙江數(shù)新網(wǎng)絡(luò)有限公司(以下簡稱:數(shù)新網(wǎng)絡(luò))由原阿里云大數(shù)據(jù)平臺研發(fā)總監(jiān),御膳房、DataWorks平臺創(chuàng)始人,數(shù)加平臺總負(fù)責(zé)人陳廷梁創(chuàng)建。經(jīng)過多年研發(fā)投入,數(shù)新網(wǎng)絡(luò)已具備政務(wù)、金融、能源、高端制造、教育等多行業(yè)專屬解決方案,高效助力企業(yè)深挖數(shù)據(jù)價值,打造核心競爭力。

產(chǎn)品服務(wù)介紹:

數(shù)新DataCyber云數(shù)據(jù)平臺解決方案,包含了云數(shù)據(jù)平臺Cybermeta、數(shù)據(jù)科學(xué)平臺CyberScience、運(yùn)維管控平臺CyberOPS、大數(shù)據(jù)分析工具CyberExcel四大核心產(chǎn)品。基于四款產(chǎn)品,數(shù)新網(wǎng)絡(luò)可提供數(shù)據(jù)匯聚到數(shù)據(jù)服務(wù)、高效建模、智能運(yùn)維、智能分析的一站式服務(wù),讓數(shù)據(jù)從采集到展現(xiàn)、從分析到驅(qū)動應(yīng)用得到高質(zhì)量結(jié)合,整體提升企業(yè)競爭力。

廠商評估:

綜合來看,數(shù)新網(wǎng)絡(luò)在一站式服務(wù)能力、產(chǎn)品協(xié)同性、技術(shù)架構(gòu)先進(jìn)、交付靈活性、生態(tài)五個方面具備優(yōu)勢。

在產(chǎn)品體系方面,數(shù)新DataCyber云數(shù)據(jù)平臺解決方案擁有完善的產(chǎn)品矩陣,包含CyberMeta、CyberScience、CyberOPS、CyberExcel四大核心產(chǎn)品。一方面,可以為客戶提供一站式服務(wù),幫助用戶快速建立從底層數(shù)據(jù)存儲到上層數(shù)據(jù)應(yīng)用的全流程數(shù)據(jù)工具體系;另一方面,能夠?yàn)榭蛻籼峁┚€上管控運(yùn)維、數(shù)據(jù)可視化等輔助功能,幫助用戶有效降低運(yùn)維成本,提升整體數(shù)據(jù)利用效率。

產(chǎn)品協(xié)同性方面, 相較于傳統(tǒng)公司各模塊獨(dú)立設(shè)計的方式,DataCyber基于后發(fā)優(yōu)勢,打造了具備高協(xié)同性的產(chǎn)品矩陣,有效解決了產(chǎn)品間解耦問題,大幅簡化了用戶產(chǎn)品適配以及系統(tǒng)建設(shè)流程,客戶在購買產(chǎn)品后能夠快速實(shí)現(xiàn)數(shù)據(jù)價值的提升。

在產(chǎn)品技術(shù)架構(gòu)方面,首先,DataCyber采用流批一體技術(shù)架構(gòu),通過整合高性能、穩(wěn)定版本的開源存儲及計算大數(shù)據(jù)組件,支持兼容多種主流開源存儲計算引擎,有效降低用戶產(chǎn)品使用成本;其次,支持面對甲方客戶的定向開源,可以在各大云平臺部署使用,使客戶避免技術(shù)路徑依賴,提高技術(shù)的自主可控性;第三,具備彈性擴(kuò)縮容、多租戶管理、跨組織數(shù)據(jù)共享和實(shí)時查詢分析、告警等多種核心能力;第四,公司80%為研發(fā)人員,團(tuán)隊主要來自大數(shù)據(jù)和金融領(lǐng)域,擁有豐富的行業(yè)經(jīng)驗(yàn)和產(chǎn)品研發(fā)經(jīng)驗(yàn),有力支撐了產(chǎn)品的開發(fā)與升級。

在產(chǎn)品交付實(shí)施方面,DataCyber支持多種靈活的交付方式,可以根據(jù)客戶需求提供標(biāo)準(zhǔn)化及定制化產(chǎn)品解決方案;同時,數(shù)新支持多樣化的產(chǎn)品部署模式,可以根據(jù)不同行業(yè)客戶需求,提供公有云、行業(yè)云以及私有云部署方式,便于客戶快速部署實(shí)施。

在生態(tài)合作方面,數(shù)新已與多家數(shù)據(jù)服務(wù)廠商建立深度合作關(guān)系,針對客戶個性化服務(wù)需求,數(shù)新可以快速集成合作伙伴能力,為客戶提供前期咨詢規(guī)劃、數(shù)據(jù)開發(fā)治理、后期維保培訓(xùn)等全流程服務(wù),并能夠?yàn)榛锇樘峁┑姆?wù)進(jìn)行全程把控,確保服務(wù)交付質(zhì)量。

典型客戶:

浙江省金融綜合服務(wù)平臺、杭州市臨安區(qū)數(shù)據(jù)中樞平臺、杭州市濱江區(qū)科技積分貸平臺

3.7數(shù)據(jù)分析平臺

市場定義:

數(shù)據(jù)分析平臺是一套由ETL引擎、數(shù)據(jù)倉庫、數(shù)據(jù)分析工具和數(shù)據(jù)查詢報表工具等功能模塊組成的軟件系統(tǒng),能夠在打通和整合企業(yè)內(nèi)部各類數(shù)據(jù)源基礎(chǔ)上,通過多樣化的數(shù)據(jù)查詢和分析,以數(shù)據(jù)報表和其他可視化圖表形式輸出數(shù)據(jù)分析結(jié)果。

甲方終端用戶:

企業(yè)數(shù)據(jù)分析師、業(yè)務(wù)分析師、管理人員

甲方核心需求:

數(shù)據(jù)分析和可視化是企業(yè)數(shù)據(jù)最直觀的價值呈現(xiàn)方式。隨著數(shù)據(jù)量的指數(shù)級上升和數(shù)據(jù)類型的豐富,企業(yè)對數(shù)據(jù)分析平臺的需求也從最初較為簡單和定向的報表和大屏,向多元化、場景化的深度挖掘分析,以及低操作門檻的方向演變,具體而言:

支持業(yè)務(wù)人員、管理人員實(shí)現(xiàn)自主數(shù)據(jù)分析。數(shù)據(jù)分析結(jié)果的最終受眾是企業(yè)業(yè)務(wù)人員和管理人員,但大多數(shù)數(shù)據(jù)分析平臺的主要使用者是企業(yè)數(shù)據(jù)團(tuán)隊,在業(yè)務(wù)邏輯向數(shù)據(jù)邏輯轉(zhuǎn)換過程中,由于溝通成本等原因,需求響應(yīng)的即時性和準(zhǔn)確性都難以保證。因此,企業(yè)業(yè)務(wù)人員和管理人員需要一個低門檻、易操作的數(shù)據(jù)分析查詢平臺,不僅能夠直接滿足其部分即時性、靈活的數(shù)據(jù)分析需求,同時還能夠方便其參與數(shù)據(jù)分析過程,與數(shù)據(jù)團(tuán)隊協(xié)作共建。

提升數(shù)據(jù)分析結(jié)果產(chǎn)出速度。企業(yè)在多年的數(shù)據(jù)分析實(shí)踐中,經(jīng)過多次加工處理形成了極度膨脹的ETL任務(wù)和中間表,在運(yùn)行中會消耗大量IT資源,嚴(yán)重拖慢了分析結(jié)果產(chǎn)出的速度。隨著外部市場的變化加快和企業(yè)運(yùn)營敏捷性提高,企業(yè)需要小時級、分鐘級的分析結(jié)果,無法接受以天為單位的產(chǎn)出。

支持業(yè)務(wù)側(cè)大量場景化、定制化需求。隨著企業(yè)在對數(shù)據(jù)分析產(chǎn)品的使用不斷加深,不再滿足于僅僅用其生產(chǎn)固定報表,而是希望能在更多深度結(jié)合垂直業(yè)務(wù)的分析場景下使用數(shù)據(jù)分析平臺滿足相應(yīng)的需求。然而,大部分?jǐn)?shù)據(jù)分析平臺是基于預(yù)設(shè)的分析場景進(jìn)行搭建,新需求的實(shí)現(xiàn)需要數(shù)據(jù)工程師進(jìn)行定制化開發(fā),等待周期較長,極為不便。

廠商能力要求:

為滿足以上需求,廠商需要為企業(yè)提供高性能、分析功能強(qiáng)大、低門檻的數(shù)據(jù)分析平臺,具體而言:

通過構(gòu)建高性能數(shù)據(jù)分析引擎或高效數(shù)據(jù)流通鏈路等方式,提升數(shù)據(jù)分析速度。其一,廠商可以基于AI算法,在數(shù)據(jù)準(zhǔn)備和數(shù)據(jù)探尋等數(shù)據(jù)分析環(huán)節(jié)中實(shí)現(xiàn)流程的自動化,提升效率;其二,廠商可以通過建立更完善和通暢的數(shù)據(jù)接入、處理、分析全鏈路,加快數(shù)據(jù)流轉(zhuǎn)。此外,廠商還可以通過構(gòu)建獨(dú)立的模型指標(biāo)層,實(shí)現(xiàn)數(shù)據(jù)存儲和計算的解耦,從而實(shí)現(xiàn)高效的數(shù)據(jù)分析。

能提供豐富的數(shù)據(jù)分析功能,并支持模型、指標(biāo)的靈活調(diào)整。廠商對預(yù)設(shè)數(shù)據(jù)分析場景的定制化能力無法滿足企業(yè)衍生出的多樣化、垂直場景化的分析需求。因此,廠商首先需要在產(chǎn)品中加入以機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等技術(shù)為基礎(chǔ)的分析引擎,支持對大數(shù)據(jù)實(shí)現(xiàn)歸因分析、預(yù)測分析等多種智能化分析方式;其次,廠商產(chǎn)品需要支持?jǐn)?shù)據(jù)模型以托拉拽等方式靈活調(diào)整,幫助數(shù)據(jù)分析人員實(shí)現(xiàn)快速按需定制。

能提供低門檻、高易用的數(shù)據(jù)交互方式,滿足業(yè)務(wù)人員使用需求。為應(yīng)對非數(shù)據(jù)分析專業(yè)人員的查詢、分析需求,廠商首先需要提供便捷的數(shù)據(jù)查詢?nèi)肟?#xff0c;支持通過拖拉拽、搜索、語音等簡易交互方式實(shí)現(xiàn)數(shù)據(jù)查詢;其次,廠商需要優(yōu)化在報表展示界面,讓用戶能夠通過滑動、托拉拽等操作自主進(jìn)行數(shù)據(jù)和指標(biāo)的關(guān)聯(lián)分析、對比分析等,并支持多種圖形化呈現(xiàn)方式選擇。

入選標(biāo)準(zhǔn):

1. 符合數(shù)據(jù)分析平臺全部廠商能力要求;

2. 2021Q2至2022Q1該市場付費(fèi)客戶數(shù)量≥10個

3. 2021Q2至2022Q1該市場合同收入≥1000萬元

代表廠商評估:

(注:以下代表廠商評估均按廠商簡稱首字音序排序)

佰聆數(shù)據(jù)

廠商介紹:

佰聆數(shù)據(jù)是一家企業(yè)數(shù)字化運(yùn)營能力提供商,基于數(shù)字化運(yùn)營平臺產(chǎn)品、DASO方法論和專業(yè)的本地化服務(wù)團(tuán)隊,形成深度貼合不同行業(yè)屬性和業(yè)務(wù)特色的“平臺+服務(wù)”一站式數(shù)字化運(yùn)營解決方案,幫助各企業(yè)形成數(shù)據(jù)驅(qū)動的戰(zhàn)略決策、市場開拓、經(jīng)營管理、風(fēng)險管控能力。目前已累計服務(wù)電力、金融、政府、制造、通信等行業(yè)的近百家大型政、企單位。

產(chǎn)品服務(wù)介紹:

佰聆數(shù)據(jù)以在實(shí)踐中沉淀總結(jié)的企業(yè)數(shù)字化運(yùn)營方法論DASO為指導(dǎo),打造了以“聆鑒”、“聆析”為核心的數(shù)字化運(yùn)營平臺,支撐企業(yè)快速構(gòu)建指標(biāo)、模型、標(biāo)簽、策略等數(shù)字化要素,并基于此開展各類大數(shù)據(jù)挖掘分析工作。其中,聆鑒是企業(yè)級大數(shù)據(jù)標(biāo)簽運(yùn)營平臺,幫助企業(yè)以標(biāo)簽的方式從海量異構(gòu)數(shù)據(jù)中高效提煉各類業(yè)務(wù)對象特征與需求;聆析是企業(yè)級大數(shù)據(jù)深度探索分析平臺,基于創(chuàng)新的“分析導(dǎo)圖”技術(shù),支撐用戶靈活開展大數(shù)據(jù)分析和數(shù)據(jù)深度探索。

廠商評估:

在產(chǎn)品方面,佰聆數(shù)據(jù)以 “分析導(dǎo)圖”、“策略畫布”、“場景畫像“、“看板雙模切換”等創(chuàng)新性功能,實(shí)現(xiàn)了產(chǎn)品獨(dú)特的易用性;在服務(wù)方面,佰聆數(shù)據(jù)以本地化專業(yè)服務(wù)團(tuán)隊,以及成熟的落地經(jīng)驗(yàn)和方法論,支撐數(shù)據(jù)分析應(yīng)用在企業(yè)的高效落地,助力企業(yè)實(shí)現(xiàn)數(shù)字化轉(zhuǎn)型。

首創(chuàng)“分析導(dǎo)圖”技術(shù),支持智能化的數(shù)據(jù)深度探索分析。佰聆數(shù)據(jù)創(chuàng)造性地提出了“分析導(dǎo)圖”技術(shù),對業(yè)務(wù)分析人員在分析工作中的“分析思維過程”進(jìn)行建模,基于多節(jié)點(diǎn)聯(lián)動分析的分析思路映射與優(yōu)化技術(shù),將用戶大腦中隱性的分析思路以“分析導(dǎo)圖”的方式進(jìn)行管理,同時結(jié)合機(jī)器學(xué)習(xí)、知識圖譜、NLP等技術(shù),實(shí)現(xiàn)對話式交互分析、分析思路智能推薦、分析結(jié)論自動生成等增強(qiáng)型分析能力,提升用戶對海量數(shù)據(jù)的洞察能力,支撐用戶開展大數(shù)據(jù)分析和數(shù)據(jù)深度探索。

具備立體化策略設(shè)計能力,數(shù)據(jù)分析成果快速賦能業(yè)務(wù)執(zhí)行。傳統(tǒng)數(shù)據(jù)分析工具能夠產(chǎn)出數(shù)據(jù)分析結(jié)果,但無法直接觸達(dá)業(yè)務(wù),而聆鑒平臺的“策略畫布”支持業(yè)務(wù)人員以托拉拽方式制定業(yè)務(wù)策略,并支持對策略進(jìn)行預(yù)演和效果評估,最后通過策略執(zhí)行端與企業(yè)內(nèi)部各種微服務(wù)進(jìn)行連接,實(shí)現(xiàn)策略自動發(fā)布執(zhí)行。以電網(wǎng)欠費(fèi)催收業(yè)務(wù)為例,電網(wǎng)公司原本需要在高風(fēng)險欠費(fèi)用戶篩選完成后,在短信平臺上傳名單,編輯短信內(nèi)容并發(fā)送,數(shù)據(jù)分析和業(yè)務(wù)執(zhí)行是割裂狀態(tài)。使用聆鑒平臺后,業(yè)務(wù)人員能夠直接在策略畫布設(shè)計整個業(yè)務(wù)策略,并一鍵進(jìn)行審批—發(fā)布執(zhí)行完整流程,大大提升了業(yè)務(wù)響應(yīng)速度。

本地化專業(yè)團(tuán)隊提供貼身服務(wù)。佰聆數(shù)據(jù)擁有由數(shù)據(jù)分析師、數(shù)據(jù)科學(xué)家、資深行業(yè)專家組成的專業(yè)、能力全面的大數(shù)據(jù)技術(shù)服務(wù)團(tuán)隊,能夠全方位解決客戶在數(shù)據(jù)采集處理、數(shù)據(jù)分析、挖掘構(gòu)建、場景化應(yīng)用等各方面問題。同時,佰聆數(shù)據(jù)在全國超20個省市具備本地化服務(wù)網(wǎng)絡(luò),能夠敏捷響應(yīng),快速支持,提供貼身服務(wù)。

在電力、政府、金融等多個行業(yè)擁有豐富實(shí)施經(jīng)驗(yàn)和成熟落地方法論。佰聆數(shù)據(jù)擁有10年以上大數(shù)據(jù)分析應(yīng)用經(jīng)驗(yàn),并長期深耕電力、金融、政府等領(lǐng)域,成立至今已服務(wù)國家電網(wǎng)、南方電網(wǎng)兩大電網(wǎng)公司多個省級以上電網(wǎng)公司,深交所、建設(shè)銀行、廣發(fā)銀行等金融機(jī)構(gòu),以及人社部社保中心等政府單位,能夠貼合業(yè)務(wù)場景進(jìn)行數(shù)據(jù)分析應(yīng)用的部署和落地。此外,佰聆數(shù)據(jù)獨(dú)創(chuàng)由發(fā)現(xiàn)問題、分析問題、評估改進(jìn)和解決問題四大環(huán)節(jié)組成的“DASO”方法論,通過科學(xué)完整的方法論推動實(shí)現(xiàn)從業(yè)務(wù)現(xiàn)狀到業(yè)務(wù)目標(biāo)和最佳實(shí)踐的轉(zhuǎn)化。

典型客戶:

國家電網(wǎng)客服中心、京博控股、廣發(fā)銀行

北極九章

廠商介紹:

北極九章是一家企業(yè)數(shù)據(jù)增強(qiáng)型分析能力提供商,具備行業(yè)領(lǐng)先的NLP自然語言處理技術(shù),以簡潔的對話式搜索顛覆傳統(tǒng)SQL數(shù)據(jù)查詢,讓數(shù)據(jù)分析工具低門檻直接賦能企業(yè)業(yè)務(wù)人員,幫助企業(yè)輕量級打造數(shù)據(jù)分析與業(yè)務(wù)應(yīng)用的高效閉環(huán),并推動形成“全民數(shù)據(jù)科學(xué)家”的探索型數(shù)據(jù)文化。目前,北極九章產(chǎn)品已在金融、互聯(lián)網(wǎng)、快消、零售等多個行業(yè)數(shù)十家標(biāo)桿企業(yè)成功落地,并與華為云、騰訊云、AWS、Kyligence、聽云、售后寶等企業(yè)達(dá)成生態(tài)合作。

產(chǎn)品服務(wù)介紹:

北極九章增強(qiáng)型數(shù)據(jù)分析引擎,是一款面向非數(shù)據(jù)分析專業(yè)的業(yè)務(wù)人員和管理人員的智能化數(shù)據(jù)分析工具,以自然語言搜索式數(shù)據(jù)查詢功能為核心,提供多種智能分析模型,支持自動適配生成報表,同時能通過自動化數(shù)據(jù)備份、多維權(quán)限驗(yàn)證、不可逆數(shù)據(jù)加密等強(qiáng)大的數(shù)據(jù)管理手段保障企業(yè)數(shù)據(jù)安全,打造安全數(shù)據(jù)管理體系與高效的數(shù)據(jù)協(xié)作范式。

廠商評估:

北極九章產(chǎn)品以領(lǐng)先的NLP和機(jī)器學(xué)習(xí)技術(shù),為企業(yè)業(yè)務(wù)和管理人員打造高度易用的分析場景,既能為中小型企業(yè)提供相對完整的數(shù)據(jù)分析能力,又能在大型企業(yè)中作為傳統(tǒng)BI的必要補(bǔ)充,解決企業(yè)數(shù)據(jù)分析能力最后一公里的問題。

采用先進(jìn)NLP to SQL自然語言識別交互技術(shù),降低數(shù)據(jù)分析門檻。北極九章采用完全自研的NLP技術(shù),將自然語言轉(zhuǎn)化為SQL語言完成數(shù)據(jù)查詢工作,并且適應(yīng)人與人之間自然對話場景指向模糊的開放性問題。例如,用戶直接檢索“XX商品銷量”,系統(tǒng)可自動識別語義并按時間、地區(qū)等常用維度展示與關(guān)鍵詞相關(guān)的數(shù)據(jù)。此外,北極九章產(chǎn)品支持設(shè)置和沉淀不同行業(yè)內(nèi)部特有的表述方式,從而最大限度貼近用戶使用習(xí)慣,降低數(shù)據(jù)分析的學(xué)習(xí)成本和技術(shù)門檻。

能力全面,對于未使用BI產(chǎn)品的企業(yè),能一站式滿足大部分?jǐn)?shù)據(jù)分析與可視化需求。首先,北極九章增強(qiáng)型數(shù)據(jù)分析引擎覆蓋數(shù)據(jù)管理、數(shù)據(jù)搜索、數(shù)據(jù)分析、可視化、數(shù)據(jù)訂閱和協(xié)作全生命周期,具備自然語言查詢、自動可視化圖表生成、自動下鉆進(jìn)行智能化歸因分析、時序預(yù)測分析等功能,幫助企業(yè)構(gòu)建完整的數(shù)據(jù)分析能力。其次,北極九章可通過對數(shù)據(jù)預(yù)處理提升查詢分析響應(yīng)速度,實(shí)現(xiàn)TB級數(shù)據(jù)實(shí)時獲取分析結(jié)果。最后,北極九章產(chǎn)品讓企業(yè)員工能夠低門檻自主探索數(shù)據(jù)分析場景,尋找指標(biāo)之間的關(guān)聯(lián),根據(jù)企業(yè)自身業(yè)務(wù)邏輯實(shí)踐出最適合的分析場景。

靈活低門檻,對已使用傳統(tǒng)BI產(chǎn)品的企業(yè),能短、平、快解決業(yè)務(wù)部門的靈活分析需求,打通企業(yè)數(shù)據(jù)分析能力最后一公里。敏捷BI產(chǎn)品的報表模板相對固定,更改和創(chuàng)建門檻高,依賴專業(yè)數(shù)據(jù)分析師,因此,敏捷BI既難以滿足業(yè)務(wù)部門提出的具有高度靈活性的長尾需求,對于業(yè)務(wù)部門的日常性分析需求也會因業(yè)務(wù)人員和數(shù)據(jù)人員對業(yè)務(wù)場景的理解不一致而無法發(fā)揮最佳效果,甚至導(dǎo)致數(shù)據(jù)分析和業(yè)務(wù)之間長期存在斷點(diǎn)。北極九章通過將數(shù)據(jù)分析能力開放給業(yè)務(wù)人員,免除需求溝通過程,在業(yè)務(wù)側(cè)直接形成數(shù)據(jù)—業(yè)務(wù)快速迭代的閉環(huán),同時激活業(yè)務(wù)人員數(shù)據(jù)創(chuàng)新能力,真正實(shí)現(xiàn)讓提出問題的人解決問題。

輕量化靈活部署,帶來優(yōu)質(zhì)的客戶體驗(yàn)。北極九章具備成熟的產(chǎn)品化封裝能力,對于已完成企業(yè)內(nèi)部數(shù)據(jù)治理的客戶,能夠直接對接企業(yè)內(nèi)部數(shù)據(jù)庫,快速完成部署工作,真正達(dá)到開箱即用的效果。此外,北極九章分析引擎可嵌入企微、釘釘、飛書等辦公軟件和企業(yè)自有業(yè)務(wù)系統(tǒng),并支持移動端和 PC 端,用簡潔流暢的操作帶來良好使用體驗(yàn)。

典型客戶:

國家電網(wǎng)、小紅書、雅戈爾

衡石科技

廠商介紹:

衡石科技是一家數(shù)據(jù)分析和 BI 領(lǐng)域的標(biāo)準(zhǔn)化軟件產(chǎn)品廠商,核心團(tuán)隊來自Amazon、BAT、秒針等高科技公司大數(shù)據(jù)部門,能夠以標(biāo)準(zhǔn)化云原生數(shù)據(jù)分析PaaS能力,同時幫助甲方企業(yè)與SaaS廠商、ISV快速整合多種數(shù)據(jù)源,搭建高價值數(shù)據(jù)分析及應(yīng)用場景,全面賦能各行業(yè)用戶持續(xù)構(gòu)建數(shù)據(jù)生產(chǎn)力。

產(chǎn)品服務(wù)介紹:

HENGSHI?SENSE?是一款云原生架構(gòu)的全棧數(shù)據(jù)分析PaaS平臺,以行業(yè)領(lǐng)先的虛擬語義層技術(shù),搭建新型ELT+E數(shù)據(jù)分析通道,配合多租戶管理、無代碼自助分析、中心化指標(biāo)管理等能力,實(shí)現(xiàn)高度敏捷、高度靈活化數(shù)據(jù)分析。面向ISV/SaaS廠商,HENGSHI?SENSE幫助廠商敏捷搭建高價值的分析場景和報表指標(biāo)體系,為其用戶提供更專業(yè)的數(shù)據(jù)服務(wù)能力;面向企業(yè)客戶,HENGSHI?SENSE?作為分析工具不僅以ELT 敏捷分析架構(gòu)和指標(biāo)中臺功能提供數(shù)據(jù)分析能力,更為企業(yè)構(gòu)建從數(shù)據(jù)集成、管理、建模到數(shù)據(jù)分析、指標(biāo)管理和數(shù)據(jù)應(yīng)用的全生命周期完整工作棧。

廠商評估:

衡石科技以行業(yè)領(lǐng)先的HQL、多租戶、湖倉一體等技術(shù),構(gòu)建企業(yè)級數(shù)據(jù)分析PaaS平臺,以多種形式為SaaS廠商、ISV及企業(yè)客戶提供敏捷分析、靈活易用、輕量部署的數(shù)據(jù)分析及應(yīng)用服務(wù)。

具備領(lǐng)先的ELT+E架構(gòu),能實(shí)現(xiàn)存算分離,顯著提升分析效率,降低資源成本。衡石科技變傳統(tǒng)ETL分析為ELT+E(分析管道+嵌入業(yè)務(wù)),通過將數(shù)據(jù)指標(biāo)和建模層獨(dú)立于數(shù)據(jù)存儲計算,使數(shù)據(jù)查詢分析不再依賴底層數(shù)據(jù)庫性能,從而大大減少數(shù)據(jù)倉庫的數(shù)據(jù)準(zhǔn)備工作,提升數(shù)據(jù)查詢和分析的效率,減少資源占用和消耗,同時也能夠便于企業(yè)實(shí)現(xiàn)本地+云、混合云等更為靈活的部署形態(tài)。

能基于虛擬語義技術(shù)構(gòu)建分析指標(biāo)集市,增強(qiáng)分析靈活性,降低數(shù)據(jù)分析門檻。衡石科技自研的虛擬語義層能夠用函數(shù)、語法、條件語句表達(dá)業(yè)務(wù)邏輯,并以此為基礎(chǔ)構(gòu)建了直供數(shù)據(jù)分析的指標(biāo)集市。面對個性化數(shù)據(jù)分析需求,使用傳統(tǒng)BI工具時需要數(shù)據(jù)部門輔助,而HENGSHI SENSE能夠支持業(yè)務(wù)部門按權(quán)限進(jìn)入指標(biāo)集市調(diào)整指標(biāo)計算公式,就能實(shí)時查看所需的報表,從而將個性化數(shù)據(jù)分析能力直接賦予業(yè)務(wù)分析人員,大大提升了數(shù)據(jù)分析和查詢的靈活性。

開放性佳,多租戶管理能力強(qiáng),能夠大大降低ISV/SaaS廠商的數(shù)據(jù)分析能力構(gòu)建成本,實(shí)現(xiàn)良好的嵌入體驗(yàn)。首先,HENGSHI SENSE 以標(biāo)準(zhǔn)化PaaS方式將基礎(chǔ)數(shù)據(jù)分析能力提供給ISV/SaaS廠商,廠商能夠基于自身成熟的行業(yè)Know-how,零代碼快速搭建數(shù)據(jù)分析場景,滿足多種場景化個性化分析需要,同時其架構(gòu)的高度開放性使得其能夠很好地嵌入市面主流SaaS產(chǎn)品,從而大大減少其自主研發(fā)成本。其次,HENGSHI SENSE 具備強(qiáng)大的多租戶管理能力,能夠基于不同用戶復(fù)雜的組織架構(gòu),以賬戶為最小權(quán)限單位,保障數(shù)據(jù)安全。

產(chǎn)品功能全面,能夠?yàn)槠髽I(yè)客戶構(gòu)建數(shù)據(jù)分析全生命周期工作棧。面對企業(yè)客戶,HENGSHI SENSE 在數(shù)據(jù)分析能力之外,還具備湖倉一體能力,能夠有效整合多源異構(gòu)數(shù)據(jù),屏蔽復(fù)雜的數(shù)倉運(yùn)維,解決從原始數(shù)據(jù)到數(shù)據(jù)建模分析中間的能力的斷層;指標(biāo)中臺能幫助企業(yè)中心化管理業(yè)務(wù)指標(biāo)體系;數(shù)據(jù)服務(wù)層擁提供交互式看板和可視化報表,支持用戶零代碼搭建可視化數(shù)據(jù)分析場景,從而一站式實(shí)現(xiàn)數(shù)據(jù)聚合、管理、建模、分析和可視化,構(gòu)建完整數(shù)據(jù)全生命周期。

產(chǎn)品化封裝能力強(qiáng),能實(shí)現(xiàn)輕量化部署。HENGSHI SENSE 是高度封裝的標(biāo)準(zhǔn)化產(chǎn)品,提供多種方式集成已有系統(tǒng),API接入上線即用,相比傳統(tǒng)BI產(chǎn)品,部署時間節(jié)約90%以上,實(shí)現(xiàn)輕量化無負(fù)擔(dān)的產(chǎn)品交付。

典型客戶:

分貝通、紛享銷客、寶尊電商、六度人和 、元?dú)馍?/span>

3.8數(shù)據(jù)科學(xué)與機(jī)器學(xué)習(xí)平臺

市場定義:

數(shù)據(jù)科學(xué)與機(jī)器學(xué)習(xí)平臺是指涵蓋數(shù)據(jù)接入、數(shù)據(jù)準(zhǔn)備、特征工程、模型訓(xùn)練、模型部署、模型管理等端到端建模全流程的軟件平臺,為企業(yè)提升模型開發(fā)效率。

甲方終端用戶:

數(shù)據(jù)科學(xué)家、風(fēng)控建模人員、營銷建模人員、業(yè)務(wù)分析人員、模型應(yīng)用人員

甲方核心需求:

為敏捷響應(yīng)市場變化需求,企業(yè)智能化應(yīng)用場景正變得更加普遍,如智能營銷、智能風(fēng)控,由此帶來企業(yè)建模需求激增。傳統(tǒng)的機(jī)器學(xué)習(xí)模型主要依靠專業(yè)數(shù)據(jù)科學(xué)家進(jìn)行開發(fā),存在開發(fā)流程慢、模型反復(fù)開發(fā)不共用的情形。整體而言,企業(yè)對數(shù)據(jù)科學(xué)與機(jī)器學(xué)習(xí)平臺的需求主要體現(xiàn)在以下幾個方面:

提高建模效率,快速響應(yīng)業(yè)務(wù)需求。機(jī)器學(xué)習(xí)模型構(gòu)建通常由問題定義、數(shù)據(jù)收集、特征工程、模型選擇、模型訓(xùn)練、模型評估等多個環(huán)節(jié)組成,每個環(huán)節(jié)又包含多種路徑,以及多組可選參數(shù),依賴人工進(jìn)行開發(fā),模型從開發(fā)到部署上線的周期時間過長,導(dǎo)致模型應(yīng)用不能及時滿足前端業(yè)務(wù)需求。企業(yè)需要自動化建模解決方案,縮短建模周期、降低建模成本,快速響應(yīng)前端業(yè)務(wù)需求。

降低建模門檻。傳統(tǒng)的Al模型構(gòu)建難度大,技術(shù)門檻高,通常需要具備專業(yè)建模知識的數(shù)據(jù)科學(xué)家來完成,但大部分企業(yè)往往不具備完善的數(shù)據(jù)團(tuán)隊,因此需要具備低門檻的數(shù)據(jù)科學(xué)與機(jī)器學(xué)習(xí)平臺,可供一般業(yè)務(wù)分析人員使用,增強(qiáng)業(yè)務(wù)建模應(yīng)用的靈活性、及時性。

模型資產(chǎn)積累。傳統(tǒng)的機(jī)器學(xué)習(xí)模型存在模型文檔編寫費(fèi)時費(fèi)力、數(shù)據(jù)科學(xué)家成熟的建模經(jīng)驗(yàn)無法供其他人員復(fù)用、模型交接低效導(dǎo)致模型反復(fù)開發(fā)等問題,企業(yè)需要將優(yōu)秀的模型沉淀為模型資產(chǎn),提高模型復(fù)用性,加速模型應(yīng)用上線。

保證模型效果。企業(yè)智能應(yīng)用的場景主要為分類、預(yù)測、推薦,由于直面用戶,模型效果的優(yōu)劣直接影響企業(yè)風(fēng)險控制、成本控制以及收益,企業(yè)需要持續(xù)提升模型效果。

廠商能力要求:

廠商應(yīng)具備自動化建模功能。廠商的機(jī)器學(xué)習(xí)平臺應(yīng)能簡化數(shù)據(jù)準(zhǔn)備工作、可支持特征工程自動化、支持通過拖拉拽的方式實(shí)現(xiàn)模型開發(fā),大幅提升建模效率,同時降低建模門檻,可供專業(yè)的數(shù)據(jù)科學(xué)家和一般業(yè)務(wù)分析人員同時使用。

廠商應(yīng)支持實(shí)現(xiàn)模型資產(chǎn)沉淀。提供一鍵應(yīng)用功能,將訓(xùn)練成功的模型以API的形式發(fā)布為線上服務(wù),降低模型上線難度,并支持將企業(yè)現(xiàn)有模型集成形成模型資產(chǎn)共享,供其他用戶在線調(diào)用,提高模型復(fù)用率。

廠商能提供場景化建模支撐。由于模型開發(fā)和應(yīng)用與行業(yè)場景的高度結(jié)合,廠商提供的機(jī)器學(xué)習(xí)模型平臺需內(nèi)置針對特定行業(yè)的模板和特征庫,契合場景建模需求,如針對金融風(fēng)控行業(yè)提供風(fēng)控標(biāo)準(zhǔn)評分卡建模模組,可對信貸申請者進(jìn)行多方面信息挖掘,快速建立各種具備高精準(zhǔn)性的風(fēng)控評分卡模型。

入選標(biāo)準(zhǔn):

1. 符合數(shù)據(jù)科學(xué)與機(jī)器學(xué)習(xí)平臺市場全部廠商能力要求;

2. 2021Q2至2022Q1該市場付費(fèi)客戶數(shù)量≥10個

3. 2021Q2至2022Q1該市場合同收入≥1000萬元

代表廠商評估:

(注:以下代表廠商評估均按廠商簡稱首字音序排序)

飛算云創(chuàng)

廠商介紹:

前海飛算云創(chuàng)數(shù)據(jù)科技(深圳)有限公司于2020年成立,是飛算數(shù)智科技(深圳)有限公司旗下全資子公司,專注于研發(fā)人工智能技術(shù)產(chǎn)品與服務(wù)、加快企業(yè)實(shí)現(xiàn)智能應(yīng)用,公司已在泛金融領(lǐng)域積累豐富落地場景,包括智能風(fēng)控、精準(zhǔn)營銷、智能推薦、銷量預(yù)測、客戶流失預(yù)警等。

產(chǎn)品服務(wù)介紹:

飛算云創(chuàng)的AI.Modeler全自動數(shù)據(jù)建模平臺是面向數(shù)據(jù)加工和模型開發(fā)的建模平臺,涵蓋數(shù)據(jù)建模領(lǐng)域的分析、清洗、衍生、選擇、迭代、上線等整個生命周期,為用戶提供自動化數(shù)據(jù)質(zhì)量檢測、自動化數(shù)據(jù)清洗、自動化特征工程、自動化參數(shù)調(diào)整、自動化模型選擇等一鍵建模以及一鍵部署功能,具有開箱即用、高效穩(wěn)定的特點(diǎn),能顯著提升AI應(yīng)用開發(fā)效率。

其中AI.Modeler按照使用人員的專業(yè)性不同分為專業(yè)版AI.Modeler Pro和極簡版AI.Modeler Lite。AI.Modeler Pro面向?qū)I(yè)建模人員,在自動建?;A(chǔ)上提供金融風(fēng)控模組、并可自動生成模型解釋性報告及訓(xùn)練日志,滿足專業(yè)建模人員模型評估、模型決策需求。AI.Modeler Lite面向普通業(yè)務(wù)人員,幫助無建模背景的業(yè)務(wù)人員快速創(chuàng)建Al模型,實(shí)現(xiàn)AI應(yīng)用。

廠商評估:

飛算云創(chuàng)的全自動數(shù)據(jù)建模平臺AI.Modeler在降低使用門檻、適應(yīng)不同建模背景人員應(yīng)用、提升建模效率、沉淀模型資產(chǎn)等方面具有明顯優(yōu)勢。此外,AI.Modeler Pro的風(fēng)控建模模組具有良好的場景適應(yīng)能力。

AI.Modeler 能實(shí)現(xiàn)零代碼全自動數(shù)據(jù)建模,同時支持專業(yè)建模人員和非專業(yè)人員快速上手建模,并顯著提升建模效率。針對不具有建模知識的普通業(yè)務(wù)人員,AI.Modeler提供低門檻極簡版AI.Modeler Lite,在數(shù)據(jù)準(zhǔn)備、特征工程環(huán)節(jié)進(jìn)行優(yōu)化,實(shí)現(xiàn)一鍵建模。其中針對建模的數(shù)據(jù)準(zhǔn)備環(huán)節(jié),AI.Modeler Lite可自動檢測數(shù)據(jù)類型并清洗,簡化數(shù)據(jù)準(zhǔn)備工作;在特征工程環(huán)節(jié),AI.Modeler Lite支持自動特征提取、自動特征衍生、自動變量分箱以及自動特征變量篩選等過程,業(yè)務(wù)人員只需導(dǎo)入數(shù)據(jù)即能得到模型結(jié)果。AI.Modeler的一鍵建模使業(yè)務(wù)人員專注于業(yè)務(wù)問題,免于繁瑣的數(shù)據(jù)工程,并顯著縮短項(xiàng)目周期,實(shí)現(xiàn)對業(yè)務(wù)需求的快速交付。此外,飛算云創(chuàng)為AI.Modeler建立了完善的培訓(xùn)體系,包括產(chǎn)品白皮書、線上使用手冊、產(chǎn)品培訓(xùn)視頻、線上產(chǎn)品體驗(yàn)等,可大幅降低學(xué)習(xí)成本,AI.Modeler Lite用戶只需一天培訓(xùn)即能熟練上手建模。針對具有專業(yè)建模能力的數(shù)據(jù)科學(xué)家,AI.Modeler提供專業(yè)版AI.Modeler Pro,在一鍵建模基礎(chǔ)上,支持?jǐn)?shù)據(jù)科學(xué)家對關(guān)鍵建模步驟尤其模型參數(shù)進(jìn)行校對調(diào)整,并且模型訓(xùn)練完成后自動生成模型解釋性報告及訓(xùn)練日志,記錄模型配置、訓(xùn)練、迭代到生成的全過程,清晰反應(yīng)模型特征,方便數(shù)據(jù)科學(xué)家及其團(tuán)隊決策。,AI.Modeler Pro用戶經(jīng)過三天培訓(xùn)即可創(chuàng)建模型進(jìn)行業(yè)務(wù)應(yīng)用。

AI.Modeler Pro 尤其適用于金融風(fēng)控場景,能為金融用戶快速建立風(fēng)控模型。飛算云創(chuàng)核心團(tuán)隊在金融領(lǐng)域具有十年經(jīng)驗(yàn),掌握覆蓋業(yè)務(wù)全流程、運(yùn)營全體系的金融科技技術(shù),具備對金融風(fēng)控場景具備專業(yè)認(rèn)知,因此AI.Modeler Pro在分類、回歸等一般機(jī)器學(xué)習(xí)應(yīng)用基礎(chǔ)上,還內(nèi)置了風(fēng)控標(biāo)準(zhǔn)評分卡建模專屬模組,可適用于金融風(fēng)控、銀行信貸、企業(yè)征信評估等應(yīng)用場景。如在銀行信貸中可對客戶的申請信息、合同信息、人行征信、學(xué)歷認(rèn)證等數(shù)據(jù)進(jìn)行充分挖掘,快速建立各種風(fēng)控評分卡模型,如申請評分卡、行為評分卡和催收評分卡。

AI.Modeler 能為企業(yè)沉淀模型資產(chǎn),提高模型復(fù)用率。針對傳統(tǒng)模型開發(fā)過程中,模型文檔編寫費(fèi)時費(fèi)力、數(shù)據(jù)科學(xué)家優(yōu)秀的建模能力無法復(fù)制以及模型交接低效等痛點(diǎn),AI.Modeler提供一鍵應(yīng)用功能,可將訓(xùn)練成功的模型以API的形式發(fā)布為線上服務(wù),將企業(yè)現(xiàn)有模型集成到模型倉庫形成模型資產(chǎn)共享,供其他用戶在線調(diào)用進(jìn)行預(yù)測,提高模型復(fù)用率。在模型預(yù)測環(huán)節(jié),AI.Modeler還支持用戶指定模型、指定多個待預(yù)測數(shù)據(jù)集,批量性地對數(shù)據(jù)集進(jìn)行預(yù)測,壓縮模型應(yīng)用時間。

典型客戶:

深圳京發(fā)科技控股有限公司、微米云服

3.9知識圖譜平臺

市場定義:

知識圖譜平臺是支撐知識圖譜構(gòu)建與應(yīng)用的平臺,該平臺融合認(rèn)知計算、知識表示與推理、信息檢索與抽取、自然語言處理與語義網(wǎng)、數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)等技術(shù),提供知識抽取、知識表示、知識融合、知識推理、知識存儲以及知識圖譜應(yīng)用等能力,幫助企業(yè)構(gòu)建知識圖譜并實(shí)現(xiàn)統(tǒng)一的知識圖譜管理和應(yīng)用。

甲方終端用戶:

企業(yè)IT部門、各業(yè)務(wù)部門

甲方核心需求:

目前,數(shù)字化轉(zhuǎn)型已進(jìn)入數(shù)據(jù)驅(qū)動階段,企業(yè)需要實(shí)現(xiàn)認(rèn)知決策類業(yè)務(wù)場景的智能化,尤其是從大量非結(jié)構(gòu)化數(shù)據(jù)中挖掘關(guān)聯(lián)關(guān)系等數(shù)據(jù)價值,賦能業(yè)務(wù)應(yīng)用。知識圖譜提供了一種從海量非結(jié)構(gòu)化數(shù)據(jù)中抽取結(jié)構(gòu)化知識,并利用圖分析進(jìn)行關(guān)聯(lián)關(guān)系挖掘的重要技術(shù)手段。核心需求包括:

高效實(shí)現(xiàn)知識構(gòu)建,形成知識推理計算能力。非結(jié)構(gòu)化數(shù)據(jù)存在數(shù)據(jù)量大、數(shù)據(jù)格式多樣、結(jié)構(gòu)不標(biāo)準(zhǔn)且復(fù)雜等問題,處理難度高,需要基于成熟的工具,利用數(shù)據(jù)治理、知識抽取、知識表示和知識融合等技術(shù),實(shí)現(xiàn)知識構(gòu)建。在知識構(gòu)建基礎(chǔ)上,企業(yè)還需要具備知識推理計算的能力,結(jié)合行業(yè)Know-How 計算知識中的顯性與隱性關(guān)系和拓展屬性,進(jìn)一步挖掘隱含的知識。

豐富領(lǐng)域知識積累。對于一些復(fù)雜的業(yè)務(wù)場景而言,知識構(gòu)建所涉及到的知識維度廣、顆粒度細(xì),其應(yīng)用也更加復(fù)雜,這就需要多個業(yè)務(wù)方向的專家共同協(xié)作,時間成本較高。因此,企業(yè)需要在日常經(jīng)營過程中重視各業(yè)務(wù)領(lǐng)域數(shù)據(jù)與知識的積累,提高知識建設(shè)的效率。

實(shí)現(xiàn)知識圖譜應(yīng)用場景落地。為通過知識圖譜技術(shù)賦能具體業(yè)務(wù)應(yīng)用實(shí)現(xiàn)價值,企業(yè)需要快速定位高價值應(yīng)用場景,根據(jù)應(yīng)用場景需求,結(jié)合業(yè)務(wù)專家知識進(jìn)行知識圖譜構(gòu)建和最終應(yīng)用價值的實(shí)現(xiàn)。典型場景包括銀行的風(fēng)控與營銷、公安的刑偵與經(jīng)偵、品牌商的門店運(yùn)營與營銷等。

廠商能力要求:

功能完整。廠商需要能夠提供具備知識抽取、知識表示、知識融合、知識推理、知識存儲以及知識圖譜應(yīng)用等完整能力的知識圖譜平臺,具備低門檻和易用性,以支撐知識圖譜的構(gòu)建和應(yīng)用。

領(lǐng)域知識圖譜積累。廠商需要在特定領(lǐng)域具有豐富的數(shù)據(jù)、模型與領(lǐng)域知識圖譜積累,在此基礎(chǔ)上針對特定業(yè)務(wù)場景為企業(yè)搭建專屬領(lǐng)域知識圖譜,完成知識賦能。

行業(yè)經(jīng)驗(yàn)豐富。廠商需要具備在特定行業(yè)的知識圖譜應(yīng)用落地能力,尤其是醫(yī)療醫(yī)藥、能源、金融等行業(yè)。該能力需包括針對特定行業(yè)的業(yè)務(wù)場景和需求理解特定領(lǐng)域的預(yù)構(gòu)建知識圖譜、上層應(yīng)用解決方案等,以及相關(guān)的客戶服務(wù)案例。

入選標(biāo)準(zhǔn):

符合知識圖譜平臺市場全部廠商能力要求;

2021Q2至2022Q1該市場付費(fèi)客戶數(shù)量≥5個

2021Q2至2022Q1該市場合同收入≥500萬元

代表廠商評估:

(注:以下代表廠商評估均按廠商簡稱首字音序排序)

數(shù)庫科技

廠商介紹:

數(shù)庫科技成立于2009年,是一家引領(lǐng)產(chǎn)融數(shù)字化的數(shù)據(jù)科技公司,四次榮獲KPMG中國Fintech 50企業(yè)。數(shù)庫科技長期致力于在金融及產(chǎn)業(yè)領(lǐng)域提供基于產(chǎn)業(yè)邏輯的智能數(shù)據(jù)產(chǎn)品與系統(tǒng)服務(wù),幫助金融機(jī)構(gòu)、企業(yè)集團(tuán)、政府部門解決業(yè)務(wù)場景中的數(shù)據(jù)和系統(tǒng)需求。

產(chǎn)品服務(wù)介紹:

數(shù)庫科技基于知識圖譜平臺,為金融、政府等各領(lǐng)域客戶提供產(chǎn)業(yè)數(shù)據(jù)、數(shù)據(jù)算法系統(tǒng)和場景化解決方案三類服務(wù)。在數(shù)據(jù)方面,數(shù)庫科技提供多維精準(zhǔn)的產(chǎn)業(yè)級、行業(yè)級和企業(yè)級知識圖譜數(shù)據(jù),可以滿足各類機(jī)構(gòu)對產(chǎn)業(yè)鏈應(yīng)用上的各階段需求;在系統(tǒng)方面,提供基于NLP、機(jī)器學(xué)習(xí)等技術(shù)的資訊標(biāo)簽化解析和結(jié)構(gòu)化數(shù)據(jù)量產(chǎn)能力;在場景化應(yīng)用方面,數(shù)庫科技基于其強(qiáng)大的產(chǎn)業(yè)數(shù)據(jù)積累和算法能力,能夠?yàn)榻鹑谛袠I(yè)的營銷、投研、風(fēng)控等業(yè)務(wù)場景,以及政府產(chǎn)研領(lǐng)域的產(chǎn)業(yè)規(guī)劃、招商引資等業(yè)務(wù)需求提供成熟的知識圖譜應(yīng)用解決方案。

廠商評估:

數(shù)庫科技以其規(guī)模龐大、高度細(xì)分的產(chǎn)業(yè)數(shù)據(jù)積累為核心,配合多種智能算法,在金融、政務(wù)等領(lǐng)域形成以業(yè)務(wù)邏輯為基礎(chǔ)的成熟知識圖譜和多樣化的業(yè)務(wù)支撐能力,能以多種方式為客戶提供易用、深度的知識圖譜搭建和數(shù)據(jù)分析挖掘服務(wù)。

擁有大規(guī)模、高細(xì)分、多維度、可串聯(lián)的產(chǎn)業(yè)數(shù)據(jù)網(wǎng)絡(luò),幫助用戶全面掌握產(chǎn)業(yè)鏈信息。數(shù)庫科技深耕產(chǎn)融大數(shù)據(jù)12年,以十二級產(chǎn)業(yè)分類體系,形成超過1000000個產(chǎn)業(yè)細(xì)分節(jié)點(diǎn)和超50萬條上下游產(chǎn)業(yè)關(guān)系,涵蓋A股、港股、美股、發(fā)債、新三板等近40000家公眾公司和近6000萬家工商企業(yè)的產(chǎn)業(yè)鏈、股東、高管、子公司、關(guān)聯(lián)交易、對外投資、擔(dān)保情況等核心關(guān)系數(shù)據(jù)。此外,數(shù)庫知識圖譜平臺通過將企業(yè)經(jīng)營情況、工商變更和股東信息等數(shù)據(jù)與產(chǎn)業(yè)圖譜打通,結(jié)合數(shù)庫科技成熟的算法模型,實(shí)現(xiàn)全領(lǐng)域的企業(yè)覆蓋,并建立了高標(biāo)準(zhǔn)、結(jié)構(gòu)化、可串聯(lián)的數(shù)據(jù)體系。

具備強(qiáng)大的機(jī)器學(xué)習(xí)和NLP算法,能實(shí)現(xiàn)結(jié)構(gòu)化數(shù)據(jù)量產(chǎn)和實(shí)時資訊精準(zhǔn)解析。數(shù)庫科技基于機(jī)器學(xué)習(xí)技術(shù)實(shí)現(xiàn)數(shù)據(jù)自動化量產(chǎn),將數(shù)據(jù)標(biāo)注、消歧、提取、清洗、質(zhì)檢、標(biāo)準(zhǔn)化等流程無縫銜接,能夠高效實(shí)現(xiàn)自動化量產(chǎn)結(jié)構(gòu)化數(shù)據(jù)。同時,數(shù)庫科技具備實(shí)時資訊文本解析能力,結(jié)合數(shù)據(jù)生產(chǎn)引擎和NLP算法模型,能夠精準(zhǔn)高效提取文本信息當(dāng)中的主體、事件及情緒等與產(chǎn)業(yè)和公司密切相關(guān)的標(biāo)簽,將人物、產(chǎn)品、行業(yè)、概念等高價值信息實(shí)時推送給各類使用方。

產(chǎn)品基于多年垂直場景邏輯框架沉淀,易用性強(qiáng),幫助金融和政府等行業(yè)客戶自動識別數(shù)據(jù)關(guān)系,構(gòu)建知識體系。在金融領(lǐng)域,數(shù)庫科技可支持對企業(yè)所屬行業(yè)/類型/地區(qū)/資本市場/資質(zhì)等的精準(zhǔn)篩選,并展示企業(yè)畫像關(guān)聯(lián)圖譜,同時也可以將用戶方的投研框架、研究邏輯、風(fēng)控模型等業(yè)務(wù)知識沉淀到知識圖譜平臺中,提升數(shù)據(jù)關(guān)系挖掘和知識沉淀的效率。

在政務(wù)領(lǐng)域,數(shù)庫科技的區(qū)域產(chǎn)業(yè)招商數(shù)字平臺可以為政府部門展示支柱產(chǎn)業(yè)、戰(zhàn)略新興產(chǎn)業(yè)、產(chǎn)業(yè)集群、龍頭企業(yè)等統(tǒng)計數(shù)據(jù),提供直觀的可視化地圖展示產(chǎn)業(yè)布局情況,政府部門可以利用該知識圖譜平臺了解地方產(chǎn)業(yè)鏈全貌、挖掘上下游供應(yīng)鏈、賦能監(jiān)管部門實(shí)現(xiàn)招商引資、增強(qiáng)區(qū)域產(chǎn)業(yè)協(xié)同效應(yīng),為產(chǎn)業(yè)發(fā)展決策提供依據(jù)推動產(chǎn)業(yè)發(fā)展等。

具備良好的數(shù)據(jù)準(zhǔn)備能力和系統(tǒng)兼容性,產(chǎn)品部署便捷。數(shù)庫科技對實(shí)時或離線大數(shù)據(jù)的數(shù)據(jù)調(diào)度、數(shù)據(jù)清洗、數(shù)據(jù)融合等任務(wù)都具備豐富的解決方案和實(shí)施經(jīng)驗(yàn),在對數(shù)據(jù)質(zhì)量和安全性要求較高的金融機(jī)構(gòu)中也可以完整的支持知識圖譜平臺的建設(shè)。此外,基于用戶本地化部署的要求,數(shù)庫知識圖譜平臺可以和金融機(jī)構(gòu)內(nèi)部的投研系統(tǒng)、資訊系統(tǒng)、風(fēng)控系統(tǒng)等直接對接,實(shí)現(xiàn)良好的能力互補(bǔ)和系統(tǒng)集成體驗(yàn)。

3.10隱私計算平臺

市場定義:

隱私計算平臺是幫助企業(yè)用戶在保護(hù)數(shù)據(jù)隱私的前提下,保障數(shù)據(jù)“可用不可見”、實(shí)現(xiàn)跨平臺數(shù)據(jù)價值共享的軟硬件平臺。

甲方終端用戶:

金融、政務(wù)、醫(yī)療、零售、電信、交通等各領(lǐng)域企業(yè)或機(jī)構(gòu)的IT部門、大數(shù)據(jù)部門、科技創(chuàng)新部門

甲方核心需求:

數(shù)據(jù)應(yīng)用場景的拓展,企業(yè)與外部機(jī)構(gòu)之間的數(shù)據(jù)流通、價值共享愈發(fā)成為應(yīng)對市場快速變化的重要手段。隨著《數(shù)據(jù)安全法》及《個人信息保護(hù)法》相繼頒布,國家對數(shù)據(jù)分享及利用的監(jiān)管加強(qiáng),企業(yè)在與外部機(jī)構(gòu)進(jìn)行數(shù)據(jù)流通過程中需要解決合規(guī)、安全問題。隱私計算技術(shù)能實(shí)現(xiàn)數(shù)據(jù)“可用不可見”,滿足安全合規(guī),成為企業(yè)進(jìn)行跨機(jī)構(gòu)數(shù)據(jù)價值共享的必要手段。在實(shí)踐過程中,企業(yè)對隱私計算解決方案的需要主要體現(xiàn)在以下幾個方面:

功能完善,提供全面數(shù)據(jù)安全解決方案。不同業(yè)務(wù)場景下企業(yè)能接受的安全假設(shè)前提不同,如風(fēng)控、營銷場景下,企業(yè)能接受可信第三方,采用聯(lián)邦學(xué)習(xí)實(shí)現(xiàn)隱私計算;而在醫(yī)療多中心合作模式下,醫(yī)院會面臨串謀攻擊、環(huán)境攻擊、模型攻擊等內(nèi)部攻擊,需要融合多方安全計算、同態(tài)加密以及可信執(zhí)行環(huán)境共同滿足數(shù)據(jù)安全要求。

滿足安全、高精度、高性能等不同場景需求。為保障數(shù)據(jù)資產(chǎn)安全,以及為滿足相關(guān)法律法律的要求,企業(yè)需要平臺在數(shù)據(jù)安全保護(hù)、系統(tǒng)環(huán)境、計算流程的可解釋性等方面滿足較高的安全性要求。而在特殊場景如工業(yè)決策、人臉識別以及多中心全基因組分析等細(xì)分場景下,企業(yè)需要高精度、高性能的隱私計算解決方案來實(shí)現(xiàn)大規(guī)模數(shù)據(jù)量的傳輸、計算,以及保證計算準(zhǔn)確性。

具備場景專業(yè)知識,提供建模及算法支持。金融、醫(yī)療等理論門檻較高,企業(yè)需要隱私計算廠商具備專業(yè)業(yè)務(wù)知識,能提供恰當(dāng)?shù)臄?shù)據(jù)分析算法和模型,幫助企業(yè)實(shí)現(xiàn)產(chǎn)出。

提供豐富數(shù)據(jù)源。數(shù)據(jù)源也是企業(yè)實(shí)現(xiàn)數(shù)據(jù)協(xié)作過程中的一個主要痛點(diǎn)。數(shù)據(jù)質(zhì)量將影響數(shù)據(jù)協(xié)作共享的價值產(chǎn)出,因此企業(yè)需要篩選、鏈接合適的數(shù)據(jù)源。企業(yè)希望廠商具有豐富的數(shù)據(jù)源網(wǎng)絡(luò),了解企業(yè)所在行業(yè)數(shù)據(jù)特點(diǎn),能為企業(yè)提供數(shù)據(jù)鏈接建議并推動實(shí)現(xiàn)合作。

廠商能力要求:

廠商應(yīng)具備完善的隱私計算解決方案,靈活滿足精度、性能、安全等要求。廠商一方面需要具備聯(lián)邦學(xué)習(xí)、多方安全計算、同態(tài)加密、可信執(zhí)行環(huán)境等一種或多種隱私計算技術(shù)能力,能支撐聯(lián)合建模、聯(lián)合統(tǒng)計、隱私求交、匿蹤查詢等多種應(yīng)用場景,并適應(yīng)不同場景需求;另一方面廠商應(yīng)具有底層隱私計算底座開發(fā)優(yōu)化能力,通過提高模型計算效率優(yōu)化、通信效率優(yōu)化、網(wǎng)絡(luò)帶寬優(yōu)化、權(quán)限控制以及引入第三方流量審計工具對數(shù)據(jù)用途進(jìn)行驗(yàn)證等多種方式滿足不同應(yīng)用場景下對高精度、高性能、高安全的需求。

廠商應(yīng)具備專業(yè)的隱私計算應(yīng)用支持能力。隨著隱私計算應(yīng)用場景不同,廠商需要具備深厚的行業(yè)認(rèn)知和洞察能力為企業(yè)實(shí)現(xiàn)隱私計算解決方案預(yù)期效果,如為泛金融行業(yè)企業(yè)提供建模支持、保證模型效果;為醫(yī)療行業(yè)設(shè)計專病特需的算法及應(yīng)用。

廠商能提供第三方數(shù)據(jù)源鏈接。不同的行業(yè)需要廠商具備不同的數(shù)據(jù)源積累,如針對醫(yī)療行業(yè),廠商需要具備衛(wèi)健委、醫(yī)院、醫(yī)保局、醫(yī)藥公司等多方數(shù)據(jù)生態(tài);針對金融行業(yè),廠商需要具備運(yùn)營商、支付、互聯(lián)網(wǎng)、政務(wù)等數(shù)據(jù)源積累,廠商能根據(jù)用戶業(yè)務(wù)場景提供合適的數(shù)據(jù)源鏈接意見,幫助企業(yè)快速提升模型效果。

入選標(biāo)準(zhǔn):

1. 符合隱私計算市場全部廠商能力要求;

2. 2021Q2至2022Q1該市場付費(fèi)客戶數(shù)量≥5個

3. 2021Q2至2022Q1該市場合同收入≥500萬元。

代表廠商評估:

(注:以下代表廠商評估均按廠商簡稱首字音序排序)

洞見科技

廠商介紹:

洞見科技是由中國最大的信用產(chǎn)業(yè)集團(tuán)“中誠信”孵化、網(wǎng)信事業(yè)國家隊“中電科”投資的領(lǐng)先的專精型隱私計算技術(shù)服務(wù)商,專注于為政務(wù)、金融、通信等行業(yè)客戶提供隱私計算技術(shù)平臺建設(shè)以及面向場景的數(shù)據(jù)智能服務(wù)。

產(chǎn)品服務(wù)介紹:

洞見科技的核心軟件產(chǎn)品洞見數(shù)智聯(lián)邦平臺(InsightOne)是其自主研發(fā)的金融級隱私計算平臺,擁有面向場景的“MPC+FL”融合引擎、可監(jiān)管的分布式信任架構(gòu)、全計算鏈路隱私安全保護(hù)、深入場景的專業(yè)化算法、無可信第三方聯(lián)邦學(xué)習(xí)、區(qū)塊鏈增信隱私計算等核心技術(shù),提供匿蹤查詢、隱私求交、集合運(yùn)算、聯(lián)合統(tǒng)計與聯(lián)合建模等功能。在InsightOne軟件服務(wù)基礎(chǔ)上,洞見科技還研發(fā)了融合計算、網(wǎng)絡(luò)、存儲等硬件資源的隱私計算高性能信創(chuàng)一體機(jī)產(chǎn)品InsightStation,滿足客戶自主可控、開箱即用的需求。基于其核心產(chǎn)品與技術(shù)能力,洞見科技通過“左加數(shù)據(jù),右加場景”的模式,為客戶提供全鏈路隱私保護(hù)數(shù)據(jù)智能服務(wù)。

廠商評估:

洞見科技的隱私計算平臺產(chǎn)品在安全部署、適用場景以及數(shù)據(jù)智能生態(tài)方面具有明顯優(yōu)勢。此外,洞見科技還具備場景咨詢能力,并持續(xù)打造跨平臺互聯(lián)互通能力,為客戶提供深度隱私計算服務(wù)。

基于融合計算引擎和區(qū)塊鏈技術(shù),InsightOne為客戶實(shí)現(xiàn)高安全部署。一方面InsightOne基于“MPC+FL”融合引擎架構(gòu)支持無可信第三方聯(lián)邦學(xué)習(xí)框架,解決多方聯(lián)合建模中的第三方可信風(fēng)險問題。另一方面,InsightOne中的區(qū)塊鏈技術(shù)通過區(qū)塊存儲功能可對隱私計算過程記錄、中間結(jié)果、數(shù)據(jù)貢獻(xiàn)進(jìn)行上鏈存儲,實(shí)現(xiàn)數(shù)據(jù)可信;以及通過智能合約功能將隱私計算過程拆解為合約在鏈上執(zhí)行,實(shí)現(xiàn)計算可信,消除客戶對模型有效性、計算結(jié)果可信度、計算貢獻(xiàn)度可靠等方面的顧慮,最終實(shí)現(xiàn)全局無損的數(shù)據(jù)智能。

具備密態(tài)數(shù)據(jù)智能的通用性和靈活性,為客戶提供不同場景的數(shù)據(jù)全鏈路隱私安全保護(hù)。InsightOne產(chǎn)品矩陣平臺提供了保護(hù)各方非交集信息的隱私安全求交(PSI)、保護(hù)交集信息并不泄漏特征的匿蹤聯(lián)邦學(xué)習(xí)(AFL)、保護(hù)模型涉及各方特征信息的多方安全計算(MPC)、保護(hù)查詢條件信息的隱私安全檢索(PIR)等功能,支持多種聯(lián)合計算應(yīng)用場景,靈活滿足客戶對功能、性能、安全、計算精度的不同需求,以密態(tài)數(shù)據(jù)智能為客戶提供數(shù)據(jù)全鏈路隱私安全保護(hù)。

具備豐富的數(shù)據(jù)智能生態(tài)和建模經(jīng)驗(yàn),為客戶提供專業(yè)場景咨詢與運(yùn)營服務(wù)。洞見科技基于數(shù)據(jù)鏈接資源的積累,一方面持續(xù)拓展銀聯(lián)、通信、征信、互聯(lián)網(wǎng)等市場化數(shù)據(jù)資源基于隱私計算技術(shù)的合作模式;另一方面對接地方政府?dāng)?shù)據(jù)資源,基于隱私計算建立政務(wù)數(shù)據(jù)安全開放共享服務(wù)新模式。洞見科技核心團(tuán)隊具備專業(yè)的金融知識、豐富的服務(wù)經(jīng)驗(yàn)和專精的技術(shù)積累,通過“隱私計算平臺建設(shè)+業(yè)務(wù)場景建模服務(wù)”的一站式解決方案,鏈接數(shù)據(jù)生態(tài)側(cè)和業(yè)務(wù)場景側(cè)的雙向資源,構(gòu)建數(shù)據(jù)智能流通網(wǎng)絡(luò)生態(tài),提升營銷、風(fēng)控、精算、債指等具體應(yīng)用場景的業(yè)務(wù)效果,賦能傳統(tǒng)行業(yè)數(shù)字化轉(zhuǎn)型與數(shù)智化升級。

洞見科技持續(xù)探索、打造跨平臺互聯(lián)互通能力,支持客戶實(shí)現(xiàn)跨隱私計算平臺合作。洞見科技首次實(shí)現(xiàn)“算法協(xié)議層”互聯(lián)互通的實(shí)踐經(jīng)驗(yàn),率先提出隱私計算平臺互聯(lián)互通的三個層次:應(yīng)用層的管理系統(tǒng)互通、算法層的算法協(xié)議互通和原語層的計算原語互通,其中針對業(yè)界重視的算法協(xié)議互通,洞見科技支持白盒、灰盒與黑盒三種方式實(shí)現(xiàn)互通方式。在標(biāo)準(zhǔn)制定方面,洞見科技牽頭了首個IEEE隱私計算互聯(lián)互通國際標(biāo)準(zhǔn),并積極主導(dǎo)和參與了信標(biāo)委、信安標(biāo)委、金標(biāo)委、中國信通院、北京金融科技產(chǎn)業(yè)聯(lián)盟等機(jī)構(gòu)組織的互聯(lián)互通標(biāo)準(zhǔn)制定工作;在應(yīng)用實(shí)踐方面,洞見科技率先與行業(yè)友商實(shí)現(xiàn)了業(yè)界首次多方異構(gòu)隱私計算平臺之間完全對等的算法協(xié)議互通,并積累了多個隱私計算平臺互聯(lián)互通標(biāo)桿案例,如在國內(nèi)首個大型股份制商業(yè)銀行招商銀行的牽頭下,洞見科技與行業(yè)多家頭部隱私計算廠商完成跨平臺互聯(lián)互通合作;與中國銀聯(lián)合作,賦能中國銀聯(lián)隱私計算平臺互聯(lián)互通方案設(shè)計驗(yàn)證與開發(fā);以及為國家工信安全中心建設(shè)了國內(nèi)首個基于隱私計算的數(shù)據(jù)要素流通生態(tài)底座。

典型客戶:

招商銀行、中國民生銀行、北京銀行、華夏銀行、中國人壽

3.11城市大數(shù)據(jù)平臺

市場定義:

城市大數(shù)據(jù)平臺是指將海量城市大數(shù)據(jù)(包括政務(wù)大數(shù)據(jù)、產(chǎn)業(yè)大數(shù)據(jù)與社會公益大數(shù)據(jù)三類)進(jìn)行收集、整合、存儲與分析,并使用分布式存儲、數(shù)據(jù)挖掘、實(shí)時動態(tài)可視化等大數(shù)據(jù)技術(shù)助力城市優(yōu)化資源配置的數(shù)據(jù)平臺。

甲方終端用戶:

政府大數(shù)據(jù)管理部門、公安部門、工信部門等

甲方核心需求:

新型智慧城市的建設(shè)需要以數(shù)據(jù)共享與治理為基礎(chǔ),但在此過程中,存在各信息系統(tǒng)數(shù)據(jù)分散且孤立、數(shù)據(jù)治理與應(yīng)用水平低等問題,嚴(yán)重阻礙了智慧城市的建設(shè)。因此,城市應(yīng)該聯(lián)通各系統(tǒng)底層數(shù)據(jù),并進(jìn)行統(tǒng)一管理與應(yīng)用,為智慧城市建設(shè)提供堅實(shí)的數(shù)據(jù)基礎(chǔ)。具體需求如下:

海量數(shù)據(jù)分散分布,需要實(shí)現(xiàn)數(shù)據(jù)互聯(lián)互通。城市大數(shù)據(jù)來源豐富,分散于經(jīng)濟(jì)、社會各個領(lǐng)域和部門中,難以實(shí)現(xiàn)互通共享,導(dǎo)致多部門協(xié)同聯(lián)動無法實(shí)現(xiàn)。因此,各城市應(yīng)該對全量數(shù)據(jù)資源進(jìn)行分級有效收集與整合,打破數(shù)據(jù)壁壘,大大提升數(shù)據(jù)使用效率。

數(shù)據(jù)來源與類型多樣,需要加強(qiáng)統(tǒng)一標(biāo)準(zhǔn)化管理。由于各類城市數(shù)據(jù)類型豐富、數(shù)量龐大且增長速度極快,存在數(shù)據(jù)質(zhì)量參差不齊、數(shù)據(jù)冗余、一數(shù)多源等問題,導(dǎo)致數(shù)據(jù)利用率大大降低。因此,各城市應(yīng)該加強(qiáng)對多源異構(gòu)數(shù)據(jù)的統(tǒng)一匯聚與統(tǒng)籌管理,提升數(shù)據(jù)使用的便捷性。

數(shù)據(jù)量激增,充分挖掘數(shù)據(jù)價值需求迫切。隨著智慧城市建設(shè)的深入推進(jìn)與物聯(lián)網(wǎng)基礎(chǔ)設(shè)施建設(shè)的不斷完善,以交通、警務(wù)為代表的政府部門數(shù)據(jù)量巨大,城市數(shù)據(jù)量劇增,這對各城市對各類大數(shù)據(jù)的應(yīng)用能力提出了更高要求。各城市應(yīng)該以強(qiáng)化數(shù)據(jù)應(yīng)用能力,深度挖掘數(shù)據(jù)價值,賦能疫情防控、洪澇預(yù)測、經(jīng)濟(jì)大腦等治理場景。

廠商能力要求:

為滿足以上需求,廠商需要為各城市搭建能夠?qū)崿F(xiàn)數(shù)據(jù)聯(lián)通、存儲、管理與分析的城市大數(shù)據(jù)平臺。具體能力如下:

實(shí)現(xiàn)數(shù)據(jù)共享與聯(lián)通,搭建城市大數(shù)據(jù)底座。該平臺需要能夠打通各領(lǐng)域、各系統(tǒng)、各部門之間的數(shù)據(jù),實(shí)現(xiàn)政府與企業(yè)全鏈路數(shù)據(jù)的雙向?qū)?#xff0c;以提高數(shù)據(jù)使用效率,為產(chǎn)業(yè)協(xié)同與城市的精細(xì)化管理提供數(shù)據(jù)基礎(chǔ)。

建立統(tǒng)一的標(biāo)準(zhǔn),進(jìn)行數(shù)據(jù)存儲、分類與治理。一方面,該平臺需要能夠?qū)碓床煌?、結(jié)構(gòu)不同的各類城市數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化建模與分布式存儲,保證數(shù)據(jù)的一致性、標(biāo)準(zhǔn)性與完整性;另一方面,該平臺還需具備加工、分類與標(biāo)簽化數(shù)據(jù)的能力,實(shí)現(xiàn)對政務(wù)信息、資源信息等數(shù)據(jù)的統(tǒng)一管理與按權(quán)限開放。

以大數(shù)據(jù)為基礎(chǔ),多模型精準(zhǔn)分析城市數(shù)據(jù)。該平臺需要能夠在交通、平安、醫(yī)療等場景下,運(yùn)用聚類、回歸等分析模型對相關(guān)數(shù)據(jù)進(jìn)行分析、預(yù)測與評估,為稅務(wù)稽查、金融監(jiān)管、農(nóng)業(yè)貿(mào)易、商務(wù)等場景提供支撐,提高政府部門所提供公共服務(wù)的質(zhì)量與公安、交通等部門的管理效率,優(yōu)化城市資源配置。同時,該平臺還需能夠?qū)?shí)時數(shù)據(jù)、數(shù)據(jù)分類與分析的結(jié)果進(jìn)行實(shí)時可視化展示,以提升數(shù)據(jù)利用率。

入選標(biāo)準(zhǔn):

符合城市大數(shù)據(jù)平臺全部廠商能力要求;

2021Q2至2022Q1該市場付費(fèi)客戶數(shù)量≥5個

2021Q2至2022Q1該市場合同收入≥1000萬元

代表廠商評估:

(注:以下代表廠商評估均按廠商簡稱首字音序排序)

中科聞歌

廠商介紹:

中科聞歌是中國科學(xué)院旗下企業(yè),創(chuàng)立于2017年,定位于全球領(lǐng)先的數(shù)據(jù)與決策智能服務(wù)商,聚焦DI+AI+OR(數(shù)據(jù)智能+人工智能+運(yùn)籌學(xué))智能計算核心技術(shù)研發(fā),面向數(shù)智安全、數(shù)智媒宣、數(shù)智城市、數(shù)智金稅、數(shù)智商業(yè)五大領(lǐng)域,提供多語言、跨模態(tài)和深度認(rèn)知智能的大數(shù)據(jù)與人工智能基礎(chǔ)平臺及解決方案,獲中科院“弘光專項(xiàng)”、 國家科技創(chuàng)新2030“新一代人工智能”重大專項(xiàng)支持,被評為國家級專精特新小巨人企業(yè)。

產(chǎn)品服務(wù)介紹:

中科聞歌的城市大數(shù)據(jù)解決方案以天湖數(shù)據(jù)智算平臺和聞海全球開源數(shù)據(jù)平臺為核心技術(shù)底座。天湖數(shù)據(jù)智算平臺是基于跨模態(tài)深度語義理解、社會計算與因果推理、決策推演的數(shù)據(jù)智能與決策智能技術(shù)平臺。聞海全球開源數(shù)據(jù)平臺融合了自主研發(fā)的跨模態(tài)AI分析、NLP深度語義計算、領(lǐng)域抽象建模技術(shù),以及十余年的知識庫積累,可針對不同客戶需求提供基于標(biāo)準(zhǔn)產(chǎn)品模塊的定制化數(shù)據(jù)智能服務(wù)。在天湖和聞海兩大平臺基礎(chǔ)上,中科聞歌的城市大數(shù)據(jù)解決方案結(jié)合決策相關(guān)大數(shù)據(jù)技術(shù)、人工智能技術(shù)能力,實(shí)現(xiàn)了非結(jié)構(gòu)化數(shù)據(jù)融合,構(gòu)建了政務(wù)領(lǐng)域知識圖譜,支撐政府提升社會態(tài)勢感知、預(yù)警預(yù)測、科學(xué)決策和精準(zhǔn)服務(wù)能力。

廠商評估:

中科聞歌是中科院科技成果轉(zhuǎn)化企業(yè),團(tuán)隊在數(shù)據(jù)智能、人工智能、運(yùn)籌學(xué)領(lǐng)域積累了十余年經(jīng)驗(yàn),經(jīng)過了眾多國家級項(xiàng)目的檢驗(yàn)。中科聞歌數(shù)據(jù)積累和知識圖譜沉淀、跨模態(tài)數(shù)據(jù)分析能力、人工智能技術(shù)研發(fā)創(chuàng)新能力,以及多個治理場景下積累的實(shí)踐經(jīng)驗(yàn),能夠幫助政府部門實(shí)現(xiàn)數(shù)據(jù)集成、數(shù)據(jù)價值挖掘和分析,為政務(wù)工作開展提質(zhì)增效。

中科聞歌在政務(wù)領(lǐng)域具有豐富的數(shù)據(jù)和領(lǐng)域知識圖譜積累,能夠?yàn)橄嚓P(guān)部門資源統(tǒng)籌、工作協(xié)同提供決策支持。城市大數(shù)據(jù)解決方案融合百億級的開源數(shù)據(jù),打通各部門相關(guān)數(shù)據(jù),并據(jù)此形成政務(wù)領(lǐng)域知識圖譜,能夠幫助政務(wù)部門提升社會態(tài)勢感知,為相關(guān)部門實(shí)現(xiàn)科學(xué)決策提供支持。以防疫工作為例,中科聞歌能夠根據(jù)病例接觸程度的不同,對相應(yīng)場所構(gòu)建知識圖譜,幫助防疫人員協(xié)同各部門防疫工作、統(tǒng)籌防疫物資,降低人工投入成本和時間成本,實(shí)現(xiàn)防疫流程高效運(yùn)轉(zhuǎn)。

中科聞歌具備跨模態(tài)數(shù)據(jù)分析能力,幫助相關(guān)部門實(shí)現(xiàn)數(shù)據(jù)價值充分挖掘。中科聞歌能夠?qū)⒎墙Y(jié)構(gòu)化數(shù)據(jù)的口徑和標(biāo)準(zhǔn)統(tǒng)一,融合所有模態(tài)數(shù)據(jù),構(gòu)建統(tǒng)一數(shù)據(jù)、技術(shù)底座,形成數(shù)據(jù)技術(shù)一體化。中科聞歌能夠根據(jù)不同場景下政務(wù)工作需求幫助有關(guān)部門構(gòu)建起數(shù)據(jù)平臺,對多模態(tài)數(shù)據(jù)進(jìn)行分析,實(shí)現(xiàn)數(shù)據(jù)價值充分挖掘,為政務(wù)決策提供有效支持。

中科聞歌可為多個政務(wù)治理場景賦能,幫助各層次政務(wù)工作提質(zhì)增效。中科聞歌城市大數(shù)據(jù)解決方案覆蓋疫情防控、洪澇預(yù)測、經(jīng)濟(jì)大腦、稅務(wù)稽查、金融監(jiān)管等政府治理場景,未來還將拓展農(nóng)業(yè)貿(mào)易、商務(wù)等場景,為相關(guān)部門高效精準(zhǔn)服務(wù)提供平臺和應(yīng)用支持。以深圳龍華經(jīng)濟(jì)大腦項(xiàng)目為例,中科聞歌宏觀上實(shí)現(xiàn)全區(qū)經(jīng)濟(jì)狀況可視化,輔助經(jīng)濟(jì)工作統(tǒng)籌規(guī)劃、協(xié)同開展;中觀上對不同產(chǎn)業(yè)經(jīng)濟(jì)進(jìn)行智能研判,為經(jīng)濟(jì)工作開展提供決策參考;微觀上對企業(yè)訴求進(jìn)行快速處理,為有關(guān)部門服務(wù)企業(yè)提供更方便快捷的途徑。

中科聞歌具備卓越的人工智能技術(shù)研發(fā)創(chuàng)新能力,為業(yè)務(wù)開展和決策統(tǒng)籌提供技術(shù)保障。作為技術(shù)研發(fā)型企業(yè),中科聞歌團(tuán)隊吸納眾多數(shù)據(jù)智能、人工智能、運(yùn)籌科學(xué)領(lǐng)域的科研技術(shù)人才,以及產(chǎn)業(yè)經(jīng)濟(jì)、媒體、安全等領(lǐng)域的實(shí)踐專家, 在國際頂級學(xué)術(shù)期刊和會議發(fā)表論文600余篇,申請發(fā)明專利近百項(xiàng),研發(fā)和實(shí)現(xiàn)核心算法3000余個,具備深度挖掘大數(shù)據(jù)和人工智能技術(shù)的研究能力和創(chuàng)新能力。中科聞歌優(yōu)秀的研發(fā)創(chuàng)新能力再結(jié)合政務(wù)領(lǐng)域的豐富經(jīng)驗(yàn),能夠在政務(wù)工作各細(xì)分場景下為業(yè)務(wù)開展和決策統(tǒng)籌提供技術(shù)保障。

典型客戶:

深圳市龍華區(qū)政務(wù)服務(wù)數(shù)據(jù)管理局、粵港澳大灣區(qū)大數(shù)據(jù)中心、上海浦東經(jīng)濟(jì)駕駛艙、山東濰坊市智慧濰坊建設(shè)辦

3.12智能營銷

市場定義:

智能營銷指在 “用戶洞察-營銷策略制定-用戶觸達(dá)與轉(zhuǎn)化-效果評估” 的數(shù)字營銷流程中,能夠運(yùn)用大數(shù)據(jù)挖掘、自然語言處理、知識圖譜、機(jī)器學(xué)習(xí)等大數(shù)據(jù)與人工智能技術(shù),通過對某類營銷方式全過程或部分環(huán)節(jié)的智能化來提升營銷質(zhì)效,包括大數(shù)據(jù)用戶洞察、輿情趨勢洞察、精準(zhǔn)投放、個性化推薦等智能營銷場景。

甲方終端用戶:

營銷部門、運(yùn)營部門、品牌部門

甲方核心需求:

對已初步搭建數(shù)字營銷體系的企業(yè)而言,在用戶洞察、營銷策略制定、用戶觸達(dá)與轉(zhuǎn)化、效果評估等環(huán)節(jié)仍存在痛點(diǎn),需要借助更全面的數(shù)據(jù)源與先進(jìn)的大數(shù)據(jù)技術(shù)更好地完成營銷目標(biāo)。具體需求包括:

外部數(shù)據(jù)缺失,需要合規(guī)采集與分析多維度用戶數(shù)據(jù)。傳統(tǒng)的用戶洞察依托企業(yè) CRM 或 CDP 已有會員數(shù)據(jù),缺少合規(guī)的外部數(shù)據(jù);用戶畫像和潛客預(yù)測等洞察場景很大程度上仍依賴人工經(jīng)驗(yàn),準(zhǔn)確度不夠高。隨著數(shù)據(jù)智能技術(shù)的發(fā)展,企業(yè)希望能夠合規(guī)使用人群特征偏好、行動軌跡、輿論趨勢等各項(xiàng)數(shù)據(jù),通過算法模型進(jìn)行實(shí)時智能分析,生成更準(zhǔn)確的洞察結(jié)論與可視化的數(shù)據(jù)展示,支撐策略制定優(yōu)化。

市場洞察難度大,需要借助智能化手段進(jìn)行全面分析。多樣化的渠道和龐雜的市場信息給企業(yè)制定營銷策略帶來挑戰(zhàn),要了解市場全局、確保營銷效果變得更困難。因此企業(yè)基于專業(yè)知識與經(jīng)驗(yàn)去制定整體營銷策略的同時,愈發(fā)強(qiáng)烈需要對全局市場環(huán)境形成系統(tǒng)性的分析方法,在客群趨勢、競品策略、市場反饋等方面獲得及時準(zhǔn)確的數(shù)據(jù)。

用戶觸達(dá)效率較低,智能化運(yùn)營水平急需提高。隨著營銷精細(xì)化程度不斷提高,企業(yè)需要提高用戶觸達(dá)與轉(zhuǎn)化環(huán)節(jié)的自動化智能化水平,基于用戶生命周期或基于用戶分群構(gòu)建豐富的營銷模型,支撐拉新、促活、個性化推薦、首購、復(fù)購、交叉購買等場景,實(shí)現(xiàn)精準(zhǔn)的千人千面營銷,進(jìn)一步提升各環(huán)節(jié)轉(zhuǎn)化效果。同時,還需要充分利用長期的營銷態(tài)勢量化數(shù)據(jù)與各產(chǎn)品、活動的實(shí)時轉(zhuǎn)化數(shù)據(jù)進(jìn)行模型自動評估,并將量化、實(shí)時、全面的效果反饋快速應(yīng)用于策路調(diào)整與優(yōu)化,持續(xù)提升營銷 ROl。

廠商能力要求:

廠商需要在活動營銷、內(nèi)容營銷與整合營銷等領(lǐng)域,提供不同的營銷工具、服務(wù)和方法論,且應(yīng)具備大數(shù)據(jù)挖掘、自然語言處理、知識圖譜、算法模型等底層技術(shù),對數(shù)字化營銷全過程或部分環(huán)節(jié)的實(shí)現(xiàn)智能化升級,主要應(yīng)提供以下能力:

大數(shù)據(jù)用戶洞察能力。廠商應(yīng)提供豐富合規(guī)的數(shù)據(jù)源以及 Al 分析模型,針對企業(yè)所需的線上線下營銷場景,運(yùn)用大數(shù)據(jù)與機(jī)器學(xué)習(xí)技術(shù)對客群人口屬性、手機(jī)及 APP 偏好、興趣關(guān)注、品牌關(guān)注、位置分布等維度,進(jìn)行實(shí)時全面的用戶洞察,為營銷策劃提供更敏捷可靠的數(shù)據(jù)支持。

市場環(huán)境洞察能力。廠商應(yīng)具備營銷業(yè)務(wù)理解和市場分析方法論,并能運(yùn)用自然語言處理、知識圖譜、數(shù)據(jù)挖掘等技術(shù)手段收集充分的市場信息,包括線下場景的區(qū)位、人流情況,以及線上場景的輿論趨勢、媒體熱點(diǎn)、渠道分布、KOL 詳情等,代替?zhèn)鹘y(tǒng)的人工調(diào)研和數(shù)據(jù)分析,形成對營銷態(tài)勢的洞察。

智能化運(yùn)營能力。廠商提供的 CDP、MA 等智能營銷產(chǎn)品,需具備智能的標(biāo)簽體系、豐富的營銷模型和效果監(jiān)測功能。通過智能打標(biāo)功能使用戶標(biāo)簽更加豐富準(zhǔn)確;通過個性化推薦、交叉推薦、復(fù)購預(yù)測、需求升級預(yù)測等營銷模型實(shí)現(xiàn)精準(zhǔn)投放,并提供細(xì)致的統(tǒng)計數(shù)據(jù)和指標(biāo),幫助企業(yè)提升用戶運(yùn)營的智能化水平。

入選標(biāo)準(zhǔn):

符合智能營銷市場全部廠商能力要求;

2021Q2至2022Q1該市場付費(fèi)客戶數(shù)量≥8個;

2021Q2至2022Q1該市場合同收入≥1000萬元。

代表廠商評估:

(注:以下代表廠商評估均按廠商簡稱首字音序排序)

數(shù)說故事

廠商介紹:

數(shù)說故事成立于2015年,總部同時設(shè)立在廣州及珠海橫琴,在北京、上海、成都設(shè)有分支機(jī)構(gòu),員工800+人,60%+為大數(shù)據(jù)和AI研發(fā)團(tuán)隊,在“認(rèn)知AI”領(lǐng)域占據(jù)領(lǐng)先地位。公司構(gòu)建了從數(shù)據(jù)收集、處理、分析、建模到商業(yè)應(yīng)用的全價值鏈解決方案,幫助10+行業(yè)的500+頭部企業(yè)完成營銷數(shù)字化轉(zhuǎn)型。

產(chǎn)品服務(wù)介紹:

作為中國領(lǐng)先的一站式大數(shù)據(jù)及AI智能應(yīng)用提供商, 數(shù)說故事構(gòu)建了從數(shù)據(jù)收集、治理、分析、建模到商業(yè)應(yīng)用的全價值鏈解決方案,基于多年的行業(yè)深耕,沉淀數(shù)說故事獨(dú)有的方法論體系及寶貴實(shí)踐經(jīng)驗(yàn),完整覆蓋產(chǎn)品創(chuàng)新、品牌營銷、內(nèi)容營銷、渠道銷售、用戶運(yùn)營、風(fēng)險預(yù)警、投資顧問等豐富的商業(yè)場景。數(shù)說故事服務(wù)日化美妝、食品飲料、連鎖零售、3C互聯(lián)網(wǎng)、汽車制造、廣告營銷等 10余個行業(yè),致力于企業(yè)及政府實(shí)現(xiàn)業(yè)務(wù)變革和營收增長。

廠商評估:

綜合來看,基于多年來大數(shù)據(jù)技術(shù)沉淀和實(shí)踐經(jīng)驗(yàn)積累,數(shù)說故事的數(shù)據(jù)能力、算法能力、平臺能力和生態(tài)構(gòu)建能力在業(yè)內(nèi)具備優(yōu)勢,可以滿足企業(yè)產(chǎn)品創(chuàng)新、品牌營銷、內(nèi)容營銷、渠道銷售、用戶運(yùn)營、風(fēng)險預(yù)警等商業(yè)應(yīng)用需求。

優(yōu)秀的數(shù)據(jù)采集能力,良好適配營銷業(yè)務(wù)對數(shù)據(jù)的時效性、全面性需求。數(shù)說故事通過自有數(shù)據(jù)中心可搜集全網(wǎng)大部分的聲量數(shù)據(jù),覆蓋社交平臺、電商平臺、視頻平臺、新聞媒體、論壇問答等多類型多平臺數(shù)據(jù),每日可采集數(shù)億條數(shù)據(jù),分鐘級別的數(shù)據(jù)更新速度行業(yè)領(lǐng)先,良好適配當(dāng)下企業(yè)對聲量數(shù)據(jù)的時效性、全面性需求和對產(chǎn)品高度穩(wěn)定性、兼容性要求。

成熟的算法平臺有效降低數(shù)據(jù)訓(xùn)練和算法開發(fā)成本,提升企業(yè)產(chǎn)品分析能力。基于經(jīng)年累月的算法能力積累,數(shù)說故事搭建了自助算法平臺,平臺具備的NLP及多模態(tài)大規(guī)模預(yù)訓(xùn)練模型,可大幅度降低企業(yè)訓(xùn)練數(shù)據(jù)和算法開發(fā)的研發(fā)成本、維護(hù)成本。經(jīng)過全網(wǎng)數(shù)據(jù)采集以后,通過數(shù)說產(chǎn)品的智能文本處理技術(shù),對數(shù)據(jù)內(nèi)容進(jìn)行語義理解和情感分析,構(gòu)建商業(yè)常識和智能推理能力,進(jìn)而可為企業(yè)提供商業(yè)知識圖譜。同時,模型可辨別信息數(shù)據(jù)真實(shí)性,由此形成人群分析、時間分析、口碑分析,為企業(yè)提供專業(yè)的產(chǎn)品研究分析報告。

數(shù)據(jù)與業(yè)務(wù)深度結(jié)合的平臺體系,推動企業(yè)營銷業(yè)務(wù)迭代升級。數(shù)說故事可以運(yùn)用扎實(shí)的數(shù)據(jù)整合及治理能力幫助企業(yè)實(shí)現(xiàn)業(yè)務(wù)數(shù)據(jù)化和數(shù)據(jù)業(yè)務(wù)化,以數(shù)據(jù)驅(qū)動企業(yè)營銷業(yè)務(wù)迭代,形成數(shù)據(jù)與業(yè)務(wù)深度融合的平臺體系。數(shù)說故事的數(shù)據(jù)平臺產(chǎn)品體系完整覆蓋從數(shù)據(jù)采集、處理、分析和建模所有環(huán)節(jié),可實(shí)現(xiàn)短時間內(nèi)快速完成營銷產(chǎn)品研發(fā)或客戶應(yīng)用交付,為其商業(yè)應(yīng)用生態(tài)建設(shè)打下良好基礎(chǔ)。

開放的生態(tài)合作環(huán)境,為企業(yè)提供更完整的解決方案。數(shù)說故事將PaaS平臺對生態(tài)合作伙伴進(jìn)行開放,為上下游數(shù)字化廠商高效賦能。例如,在輿情場景下生態(tài)合作廠商可以利用數(shù)說已有的社媒數(shù)據(jù)庫進(jìn)行數(shù)據(jù)采集,在內(nèi)容創(chuàng)作場景下,數(shù)說PaaS平臺可幫助合作伙伴快速生成內(nèi)容素材實(shí)現(xiàn)內(nèi)容創(chuàng)作。合作廠商可依賴數(shù)說的開放平臺大范圍收集多維度多模態(tài)數(shù)據(jù)、快速構(gòu)建互補(bǔ)性的場景產(chǎn)品,縮短廠商的產(chǎn)品建設(shè)研發(fā)周期,加速合作廠商為企業(yè)的服務(wù)效率。

典型客戶:

伊利、騰訊、寶潔、華為、廣汽等

3.13安全大數(shù)據(jù)

市場定義:

安全大數(shù)據(jù)指利用大數(shù)據(jù)技術(shù),在對全流量數(shù)據(jù)進(jìn)行多維安全分析、風(fēng)險事件分析、異常行為分析,深度識別、處理和防范網(wǎng)絡(luò)安全風(fēng)險的同時,優(yōu)化傳統(tǒng)網(wǎng)絡(luò)安全、數(shù)據(jù)安全防控體系下的大數(shù)據(jù)架構(gòu),實(shí)現(xiàn)安全大數(shù)據(jù)的高效運(yùn)營管理的綜合性解決方案。

甲方終端用戶:

企業(yè)IT部門、網(wǎng)絡(luò)安全部門

甲方核心需求:

近年來,各行業(yè)網(wǎng)絡(luò)安全監(jiān)管收緊,網(wǎng)絡(luò)安全法規(guī)頻繁出臺,而隨著企業(yè)數(shù)據(jù)孤島問題日益嚴(yán)重,以及外部入侵方式逐漸升級,僅通過傳統(tǒng)訪問權(quán)限、網(wǎng)絡(luò)掃描等手段難以實(shí)現(xiàn)健全的網(wǎng)絡(luò)安全管控。因此,企業(yè)需要利用大數(shù)據(jù)分析,提升對風(fēng)險因素的感知、預(yù)測和防范能力,升級企業(yè)網(wǎng)絡(luò)安全保障。具體而言,企業(yè)對安全大數(shù)據(jù)的需求主要有以下幾點(diǎn):

提升數(shù)據(jù)處理能力。網(wǎng)絡(luò)安全分析所需數(shù)據(jù)有硬件設(shè)備數(shù)據(jù)、網(wǎng)絡(luò)安全設(shè)備數(shù)據(jù),以及系統(tǒng)日志、應(yīng)用日志、運(yùn)行和維護(hù)數(shù)據(jù)、外部攻擊數(shù)據(jù)等,數(shù)據(jù)量大且存儲較為分散,需要提升數(shù)據(jù)的集中處理能力,才能實(shí)現(xiàn)全面和及時的安全分析。

事前實(shí)現(xiàn)風(fēng)險主動發(fā)現(xiàn)和預(yù)警。企業(yè)內(nèi)外數(shù)據(jù)交互渠道不斷豐富,交互頻次不斷提升,對網(wǎng)絡(luò)中潛在惡意文件、惡意郵件等的防護(hù)也需要升級。在未發(fā)生風(fēng)險時,需要通過過往經(jīng)驗(yàn)及安全系統(tǒng)排查能力對潛在風(fēng)險進(jìn)行有效預(yù)防。

事后實(shí)現(xiàn)風(fēng)險高效處理。企業(yè)數(shù)據(jù)系統(tǒng)復(fù)雜性不斷提升,對于問題響應(yīng)和處理即時性的要求也在不斷提升,傳統(tǒng)安全體系下,在安全問題發(fā)生后的日志和流量分析耗費(fèi)時間較長,且風(fēng)險追溯要通過逐一排查實(shí)現(xiàn),風(fēng)險處理和修復(fù)時間長。企業(yè)希望通過高效的分析和追溯,快速進(jìn)行問題定位,實(shí)現(xiàn)精準(zhǔn)打擊。

在滿足行業(yè)監(jiān)管要求和業(yè)務(wù)場景需要前提下,形成集團(tuán)統(tǒng)一的安全管控體系。不同行業(yè)網(wǎng)絡(luò)安全和數(shù)據(jù)安全標(biāo)準(zhǔn)存在差異,業(yè)務(wù)場景不同也帶來安全防控部署上的差異,且對于大型組織而言,集團(tuán)、二級單位安全功能建設(shè)和部署不統(tǒng)一,安全等級不對稱等問題較為嚴(yán)重,因此,企業(yè)需要建設(shè)同時滿足上述條件要求的網(wǎng)絡(luò)安全防控體系。

廠商能力要求:

具備海量多元數(shù)據(jù)處理和即時查詢能力。首先,廠商要具備數(shù)據(jù)融合能力,通過多源數(shù)據(jù)分類、清洗、加工等多級處理,為安全分析提供精準(zhǔn)可靠的數(shù)據(jù)源。其次,廠商產(chǎn)品需采用高可用的大數(shù)據(jù)架構(gòu),能夠與企業(yè)原有大數(shù)據(jù)平臺進(jìn)行對接,滿足國家法律規(guī)定半年以上的網(wǎng)絡(luò)日志存儲要求,實(shí)現(xiàn)大規(guī)模網(wǎng)絡(luò)數(shù)據(jù)的全量采集和存儲。最后,廠商產(chǎn)品應(yīng)提供數(shù)據(jù)檢索能力,通過大數(shù)據(jù)索引技術(shù),幫助快速實(shí)現(xiàn)數(shù)據(jù)查詢,輔助進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析。

具備智能化的風(fēng)險檢測和評估能力。首先,廠商產(chǎn)品要能夠?qū)Π踩L(fēng)險進(jìn)行智能建模,基于歷史數(shù)據(jù)行為和外部威脅情報,通過機(jī)器學(xué)習(xí)、統(tǒng)計學(xué)分析等多項(xiàng)技術(shù),對安全行為進(jìn)行場景化建模,通過攻擊特征多維度分析預(yù)測、未知威脅識別等多種安全分析手段,幫助企業(yè)提前發(fā)現(xiàn)數(shù)據(jù)異常行為,實(shí)現(xiàn)風(fēng)險預(yù)警。其次,廠商需要具備風(fēng)險評估能力,通過對攻擊行為的分析,評估該行為對網(wǎng)絡(luò)系統(tǒng)的危害,輔助后期決策。

具備風(fēng)險鏈路追蹤和可視化交互能力。首先,廠商產(chǎn)品要具風(fēng)險溯源能力,通過對風(fēng)險事件逐層下鉆,關(guān)聯(lián)到原始日志和文件,高效定位風(fēng)險源頭。其次,廠商產(chǎn)品要具備可視化攻擊鏈路分析能力,將分析結(jié)果以圖譜等形式進(jìn)行可視化呈現(xiàn),清晰回溯攻擊關(guān)系,方便運(yùn)維人員更直觀分析風(fēng)險并進(jìn)行針對性處理。

具備行業(yè)化、場景化安全體系建設(shè)經(jīng)驗(yàn)和方法論,同時支持大型企業(yè)多級聯(lián)安全體系搭建。首先,廠商需要熟悉不同行業(yè)網(wǎng)絡(luò)安全標(biāo)注和規(guī)范,在結(jié)合不同行業(yè)業(yè)務(wù)場景的情況下,為企業(yè)合理設(shè)計安全解決方案。其次,廠商需要根據(jù)企業(yè)組織架構(gòu)和數(shù)據(jù)安全需要,搭建支撐大型企業(yè)多級級聯(lián)、多分支機(jī)構(gòu)的安全管理體系,考慮不同層級防御系統(tǒng)之間的協(xié)作,實(shí)現(xiàn)嚴(yán)密的聯(lián)防聯(lián)控。

入選標(biāo)準(zhǔn):

1. 符合安全大數(shù)據(jù)全部廠商能力要求;

2. 2021Q2至2022Q1該市場付費(fèi)客戶數(shù)量≥5個

3. 2021Q2至2022Q1該市場合同收入≥500萬元

代表廠商評估:

(注:以下代表廠商評估均按廠商簡稱首字音序排序)

斗象科技

廠商介紹:

斗象科技創(chuàng)立于2014年,總部位于上海,是中國領(lǐng)先的網(wǎng)絡(luò)安全數(shù)據(jù)智能與安全運(yùn)營提供商,新一代網(wǎng)絡(luò)安全領(lǐng)軍企業(yè)。公司以斗象科技為集團(tuán)中心,圍繞斗象智能安全、漏洞盒子、FreeBuf三大生態(tài)打造新一代網(wǎng)絡(luò)安全科技企業(yè),綜合運(yùn)用安全數(shù)據(jù)智能、實(shí)戰(zhàn)攻防、安全運(yùn)營技術(shù)以及互聯(lián)網(wǎng)化的白帽平臺優(yōu)勢,持續(xù)提升公司核心競爭力,為企事業(yè)客戶夯實(shí)網(wǎng)絡(luò)安全底座。

產(chǎn)品服務(wù)介紹:

斗象科技旗下品牌包括安全數(shù)據(jù)智能與安全運(yùn)營產(chǎn)品體系“斗象科技智能安全”,網(wǎng)絡(luò)安全眾測與安全運(yùn)營服務(wù)平臺“漏洞盒子”,網(wǎng)絡(luò)安全行業(yè)門戶“Freebuf”及“Freebuf咨詢”?!岸废罂萍贾悄馨踩币詳?shù)據(jù)分析為基石,為企業(yè)提供安全數(shù)據(jù)智能與安全運(yùn)營產(chǎn)品。安全數(shù)據(jù)智能與安全運(yùn)營產(chǎn)品體系具備了全流量存儲、秒級溯源、多維度安全分析與歷史數(shù)據(jù)計算、綜合風(fēng)險管理與事件分析、資產(chǎn)智能識別與異常行為監(jiān)測技術(shù)特性,完整覆蓋事前演練、事中分析、事后追蹤安全工作全流程,幫助企業(yè)構(gòu)建安全運(yùn)營體系,從而保障企業(yè)數(shù)據(jù)安全。

廠商評估:

綜合來看,基于多年的實(shí)踐經(jīng)驗(yàn)積累和海量安全知識沉淀,斗象科技的安全數(shù)據(jù)存儲和分析能力、安全產(chǎn)品可擴(kuò)展能力、安全攻防演練解決方案以及安全運(yùn)營解決方案在業(yè)內(nèi)具備優(yōu)勢。

優(yōu)秀的數(shù)據(jù)存儲、數(shù)據(jù)計算及安全分析能力,為防范威脅攻擊奠定基礎(chǔ)。斗象科技為企業(yè)提供的安全計算分析產(chǎn)品,可全量存儲全流量數(shù)據(jù)、網(wǎng)絡(luò)文件、PCAP、郵件等6個月以上。該產(chǎn)品可對數(shù)據(jù)實(shí)現(xiàn)流式處理,能夠滿足企業(yè)對數(shù)據(jù)實(shí)時分析和離線計算的需求,同時還支持PB級數(shù)據(jù)檢索,對千億規(guī)模的流量日志實(shí)現(xiàn)秒級查詢。在安全分析層面,該產(chǎn)品能夠?qū)崿F(xiàn)規(guī)則特征分析、跨時間周期分析、調(diào)查溯源分析及影響面分析。斗象科技優(yōu)秀的數(shù)據(jù)存儲、數(shù)據(jù)計算及安全分析能力,為實(shí)現(xiàn)攻擊預(yù)警、監(jiān)測、分析、響應(yīng)奠定堅實(shí)的基礎(chǔ)。

高可用、可持續(xù)擴(kuò)展的集群架構(gòu),能夠支持千億級別安全數(shù)據(jù)的計算、分析、比對。在企業(yè)業(yè)務(wù)活動流量激增情況下,斗象科技提供的安全大數(shù)據(jù)產(chǎn)品可根據(jù)業(yè)務(wù)需要無限橫向擴(kuò)展存儲分析集群,支持千億級別數(shù)據(jù)計算、分析、比對的能力,大幅提升了安全大數(shù)據(jù)產(chǎn)品的使用性能和可用性。

完善的攻防演練解決方案,幫助企業(yè)提升安全防御能力。斗象科技為企業(yè)提供的解決方案面向企業(yè)互聯(lián)網(wǎng)、辦公網(wǎng)的全攻擊路徑的預(yù)警、監(jiān)測、分析、響應(yīng)體系,能夠發(fā)現(xiàn)主動攻擊、跟蹤被動威脅,建立事前預(yù)警和事后響應(yīng)的協(xié)作機(jī)制,并有效監(jiān)測辦公網(wǎng)及員工安全行為,對繞過企業(yè)安全設(shè)備的潛在威脅、異常行為、違規(guī)行為進(jìn)行分析和處理,能夠幫助企業(yè)提升攻防對抗能力、應(yīng)急響應(yīng)能力、安全防御能力。

提供定制化、體系化的安全運(yùn)營解決方案,滿足企業(yè)個性化需求。斗象科技的安全大數(shù)據(jù)解決方案可站在企業(yè)戰(zhàn)略角度,為企業(yè)安全部門提供一整套安全數(shù)據(jù)計算、安全運(yùn)營與漏洞管理及安全監(jiān)測產(chǎn)品矩陣。該解決方案能夠?qū)ζ髽I(yè)接收的流量、數(shù)據(jù)、郵件進(jìn)行全面計算和分析,精準(zhǔn)識別潛在威脅。并通過安全運(yùn)營系統(tǒng)對漏洞進(jìn)行自動化管理、對攻擊者進(jìn)行溯源反制,充分保障企業(yè)資產(chǎn)安全。不僅如此,斗象科技還可以根據(jù)企業(yè)自身安全能力和預(yù)期靈活調(diào)整產(chǎn)品架構(gòu),各產(chǎn)品之間自由組合,可完美適應(yīng)當(dāng)下企業(yè)對于安全問題的個性化需求。

斗象科技的安全大數(shù)據(jù)解決方案具有較高的易用性,能幫用戶快速提升安全水位。斗象科技采用旁路布控方式,在不對其他部門的核心業(yè)務(wù)造成影響的前提下,完成安全設(shè)備的部署、安裝和調(diào)試,降低安全大數(shù)據(jù)產(chǎn)品的使用難度,快速提升公司整體安全能力和水位。

典型客戶:

中國銀聯(lián)、中國聯(lián)通、中國外匯交易中心

4.入選廠商列表

點(diǎn)贊()
上一條:2022GCMC全球碳管理大會在北京舉行 碳阻跡研究院正式成立2022-09-29
下一條:解碼濱化集團(tuán)創(chuàng)新DNA2022-09-29

相關(guān)稿件

人工智能數(shù)據(jù)治理行業(yè)報告發(fā)布 云測數(shù)據(jù)入選大數(shù)據(jù)智能產(chǎn)業(yè)生態(tài)圖譜 2022-04-13
中國經(jīng)濟(jì)今年預(yù)計增長8.5%左右 政策需如何發(fā)力 2021-08-11
中國經(jīng)濟(jì)今年預(yù)計增長8.5%左右 政策需如何發(fā)力 2021-08-10
報告:北京位居中國人工智能城市排名首位 2021-11-04
2021中國大企業(yè)創(chuàng)新100強(qiáng)分析報告發(fā)布 2021-09-25
國務(wù)院國有資產(chǎn)管理委員會 中國企業(yè)聯(lián)合會 中國企業(yè)報 中國社會經(jīng)濟(jì)網(wǎng) 中國國際電子商務(wù)網(wǎng) 新浪財經(jīng) 鳳凰財經(jīng) 中國報告基地 企業(yè)社會責(zé)任中國網(wǎng) 杭州網(wǎng) 中國產(chǎn)經(jīng)新聞網(wǎng) 環(huán)球企業(yè)家 華北新聞網(wǎng) 和諧中國網(wǎng) 天機(jī)網(wǎng) 中貿(mào)網(wǎng) 湖南經(jīng)濟(jì)新聞網(wǎng) 翼牛網(wǎng) 東莞二手房 中國經(jīng)濟(jì)網(wǎng) 中國企業(yè)網(wǎng)黃金展位頻道 硅谷網(wǎng) 東方經(jīng)濟(jì)網(wǎng) 華訊財經(jīng) 網(wǎng)站目錄 全景網(wǎng) 中南網(wǎng) 美通社 大佳網(wǎng) 火爆網(wǎng) 跨考研招網(wǎng) 當(dāng)代金融家雜志 借貸撮合網(wǎng) 大公財經(jīng) 誠搜網(wǎng) 中國鋼鐵現(xiàn)貨網(wǎng) 證券之星 融易在線 2014世界杯 中華魂網(wǎng) 納稅人俱樂部 慧業(yè)網(wǎng) 商界網(wǎng) 品牌家 中國國資報道 金融界 中國農(nóng)業(yè)新聞網(wǎng) 中國招商聯(lián)盟 和訊股票 經(jīng)濟(jì)網(wǎng) 中國數(shù)據(jù)分析行業(yè)網(wǎng) 中國報道網(wǎng) 九州新聞網(wǎng) 投資界 北京科技創(chuàng)新企業(yè)誠信聯(lián)盟網(wǎng) 中國白銀網(wǎng) 炣燃科技 中企媒資網(wǎng) 中國石油化工集團(tuán) 中國保利集團(tuán)公司 東風(fēng)汽車公司 中國化工集團(tuán)公司 中國電信集團(tuán)公司 華為技術(shù)有限公司 廈門銀鷺食品有限公司 中國恒天集團(tuán)有限公司 濱州東方地毯集團(tuán)有限公司 大唐電信科技股份有限公司 中國誠通控股集團(tuán)有限公司 喜來健醫(yī)療器械有限公司 中國能源建設(shè)股份有限公司 內(nèi)蒙古伊利實(shí)業(yè)集團(tuán)股份有限公司 中國移動通信集團(tuán)公司 中國化工集團(tuán)公司 貴州茅臺酒股份有限公司